
Forthcoming in Journal of Economic and Social Measurement Draft: 3 April 2005

The Sensitivity of Econometric Results to Alternative Implementations of Least Squares

Houston H. Stokes
Department of Economics, UIC
hhstokes@uic.edu

This paper is concerned with a detailed study of the accuracy tradeoffs of
differences in data precision and alternative approaches to the estimation of OLS
models. The implications of the analysis of a variety of problems, most of which
have known answers, extend far beyond OLS modeling and directly impact any
empirical analysis when the matrices are at all ill conditioned or "stiff." While the
focus here is on linear modeling, the findings are equally, if not more, important
to nonlinear modeling. Independent of the effect of the algorithm used, the
precision in which the data was initially read was found to have a major impact on
accuracy, even when the data was subsequently moved to a higher precision. This
finding, illustrated best with the extremely multicollinear Filippelli data set,
suggests that if a data base standard is agreed upon, the precision of the data saved
will be of critical importance. By the use of variable precision arithmetic
software, an extended benchmark was developed for the Filippelli data and the
results compared to the real*8 and real*16 QR results. Much of the software
developed for this paper has been put in the public domain to be used by other
researchers.

1. Introduction

1.1 Introductory remarks

In the last 40 years changes in operating systems, computer hardware, compiler
technology and the needs of research in applied econometrics have all influenced
econometric software development and the environment of statistical computing.
However, despite a number of articles by McCullough & Vinod [14, 15] and Renfro [22,
23] and others, many economists are not aware of the impact on the accuracy of the
calculation of using the alternate solution methods and data precisions that have been
implemented in various statistical packages. Furthermore, less thought has usually been
given to the impact on the accuracy of the final calculation that can be traced to the initial
precision of the data saved in memory before it was moved to a higher precision for the
calculation.1 Where the moment matrix does not have a high degree of multicollinearity,

1 For example many software systems allow real*4 data storage but move the data to real*8 to make a
calculation. In many cases the resulting accuracy is not the same as what would be obtained with a direct
read into real*8. A simple example involving 2.00 / 4.11 will illustrate the problems of precision.

str=>vpa .4866180048661800486618004866180048661800486618004866M+0
r*8=>vpa .48661800486618001080454992664677M+0
r*8=>r*16 .48661800486618001080454992664677E+00
str=>r*16 .48661800486618004866180048661800E+00
r*8=>r*8 .48661800486618000000000000000000E+00
r*4=>r*4 .48661798200000000000000000000000E+00

 1

the selection of the appropriate method of analysis may be less critical, provided double
precision calculations are made and the underlying linear algebra software used is of high
quality. However, due to the popularity of polynomial regression models and the present
widespread use of long lag VAR and error correction models, rank problems often occur
as the moment matrix becomes increasingly "stiff." While the focus of this paper is on the
estimation of OLS models, many of the findings on how to increase accuracy can be used
in nonlinear modeling where rank issues can potentially be more serious. Using four data
sets of varying difficulty, three of which have "certified" answers from StRD [27], the
effect of the estimation method on the number of correct digits is studied. In addition,
various means by which accuracy of a given method can be increased are discussed and
illustrated. A number of the alternatives considered involve modifications to BLAS [10]
software that should be used throughout a modern software system. The consequence of
these improvements will be reflected in improved accuracy of many other calculations
throughout the software system. The routines developed in this paper have been released
for general use and are described in some detail. Finally, the relationship between
real*16 (64 bit) estimation and the precision of the underlying data storage is illustrated.

While data read into double precision (real*8) can be converted to real*16 to

obtain greater accuracy, the results reported in the paper document the gain in accuracy if
the data is directly read into real*16.2 This finding, illustrated best with the extremely
multicollinear Filippelli polynomial regression data set, suggests that if a data base
standard is agreed upon, the precision of the data saved will be of critical importance.3
By the use of variable precision arithmetic software, an extended benchmark was
developed for the Filippelli data and the results were compared to the real*16 results to
fully benchmark the gains of real*16 calculation. Testing of real*16 implementations is
of increased importance due to the coming availability of 64 bit machines, which lower
the cost of real*16 / complex*32 calculation. While most modern Fortran compilers have
supported real*16 and complex*32 data types, using software emulation, the availability
of hardware implementations of these data types will make their growing availability in
software systems in the future more likely. Since a number of software systems still save
data and make calculations in real*4, the Pontius data set, which is of intermediate

The line str>vpa lists the exact answer obtained when the data (2.0 and 4.11) are read from a string into a
variable precision arithmetic (VPA) routine while the line r*8=>vpa shows what happens to accuracy
when the data are first read into real*8 or double precision, then moved to a vpa datatype. The line
r*8=>r*16 shows what occurs when the data are first read into real*8, then converted to real*16 before
making the calculation. In this case the results are the same as what is obtained with r*8=>vpa but are
inferior to the line str=>r*16 where the data are read directly into real*16. The lines r*8=>r*8 and
r*4=>r*4 show what can be expected using the usual double precision and single precision math,
respectively. The importance of this simple example is it shows the effect of data storage precision and
data calculation precision in a very simple problem where each can be isolated. When there are many
calculations needed to solve a problem (to invert a 100 by 100 matrix by elimination involves a third of a
million operations), round off error can mount, especially when numbers differ in size. Strang [34, page 32]
notes "if floating-point numbers are added, and their exponents c differ say by two, then the last two digits
in the smaller number will be more or less lost..."

2 Real*4 or single precision on IEEE machines has a range of 1.18*10-38 to 3.40*1038. This gives a
precision of 7-8 digits at best. Real*8 or double precision has a range of 2.23*10-308 to 1.79*10308 and at
best gives a precision of 15-16 digits. Real*16 has a range of 10-4931 to 104932 and gives up to 32 digits of
precision. VPA or variable precision arithmetic allows variable precision calculations.
3 The question is whether the data base produces a real*4 data value, a real*8 data value, or a character
representation of the exact digits of the basic data, which could then be read into the investigators precision
of choice.

 2

difficulty, is estimated using a variety of methods for real*8 data and real*4 data. The
interesting result is while methods of analysis that involved formation of (')X X failed
the condition check for both real*8 and real*4 data, if these checks were ignored, the
results were surprisingly good. The QR method, however, gave superior performance in
terms of accuracy. We next turn to some of the statistical issues before moving to a
discussion of the examples.

1.2 Statistical background

 Assuming X is a matrix of N observations on K right-hand side variables and
is a N element vector of values of the left-hand side variable, econometric textbooks tell
us that the estimated solution vector to the ordinary least squares problem is

y

1ˆ (') 'X X Xβ −=

ˆ
y

('
 with coefficient standard errors as the square root of the diagonal

elements of 2 1)X Xσ − where . Usually, there is little
emphasis on how best to solve (

2 2ˆ() /(y X N Kσ β= − −
1')

)
X X − , or whether in fact to calculate it at all. The

condition of a matrix X, C(X), defined as the ratio of the largest to the smallest singular
value (to be defined below), can be used to help in this decision. Values of C(X) obtained
near 1 indicate the inverse of 'X X

ˆ

can be accurately formed and the matrix is deemed to
be well conditioned. However, if C(X) increases, there are increased difficulties in
obtaining the inverse accurately. It can be proved that C X . Since the
formation of X'X squares the condition, in cases where there is multicollinearity and the
condition was already large, methods of solving for

2(') [()]X C X=

β that do not require the formation
of 'X X such as the QR (defined later) and the SVD (defined later) may very well be the
method of choice. The goal of this paper is to illustrate the gains of such methods as well
as to discuss various ways to increase accuracy. Then impact of data precision will also
be discussed.

If the inverse is desired, many practicing economists give little thought of the
choice of an inversion approach. Assuming a full rank system, since 'X X is positive
definite, the Cholesky factorization has been found to be substantially faster by a factor
of at least 2 over a general matrix solution technique such as the LU factorization,
although this is usually not discussed.4 In discussing alternatives to the usual formula,
Greene ([7] page 175)5 notes, "the loss of accuracy in least squares computations occurs
not in inverting 'X X but in accumulating it." Greene goes on to note "the singular value
decomposition and QR decomposition… are generally the preferred approach to the
computation of least squares."6 A major focus of the present paper is to study empirically

4 An exception is Judd [9 page 60] who notes, "The advantages of the Cholesky decomposition is that it
involves only multiplications and n square roots, which is about half the cost of Gaussian
elimination for large n. It is also more stable than LU decomposition, particularly since there is no need for
pivots." Once the Cholesky R is found, it is possible to directly solve the system of equations without
explicitly obtaining

3 / 6n

1(')X X − . In a related paper on cointegration methods, Doornik and O'Brien [6]
recommend a number of numerically stable methods that include the QR and the SVD, with the former
being fastest and the latter being more suitable in reduced rank situations.
5 In 2000 this was in the chapter on computation (3). In the 5th edition in 2005, much of this material was
moved to page 833 of Appendix A.
6 Press [21], page 513-518 cautions the reader to use the QR method or the SVD method, except when the
problem is easy. Press comments on the speed loss of the SVD but notes, "Its great advantage, that it
(theoretically) cannot fail, more than makes up for its speed disadvantage." Results reported later suggest

 3

both "accumulation/precision issues" and "method of calculation issues," with the
objective of showing what can be expected in terms of accuracy using various approaches
on a variety of linear test problems. The examples have been selected to stress the
software. All but one has been taken from the StRD data sets, which have been designed
to exhibit data stiffness.7 While the issue of accuracy was first brought to the attention of
the profession by the work of Longley [11], in recent years a number of important papers
by McCullough and Vinod [14,15], McCullough and Renfro [13], McCullough [16, 17,
18] and Renfro [23, 24] have demonstrated that this is a subject that continues to be
relevant today. This paper is a contribution to this ongoing discussion.

1.3 Overview of the paper

After first briefly discussing the alternative approaches to estimation, such as LU,
Cholesky, QR and SVD, and why they might be used, this paper will outline a number of
modifications to the BLAS library of utility programs that will increase real*8, real*16
and real*4 accuracy of the various approaches.8 Issues of data storage, whether to save
data in real*8, real*4 or real*16, which have had little discussion in the literature, will be
explored, using known examples.9 Finally, variable precision arithmetic is used to extend
a famous benchmark to validate the accuracy of the reported real*16 calculations.

that not all SVD routines are created equal and use of the SVD can result in substantial accuracy loss in
some cases.
7 StRD [27] documentation refers to the work of Simon and Lesage [28], who note that as the number of
constant leading digits increases, it becomes increasingly more difficult to make accurate computations.
8 The changes to BLAS [10], LINPACK [5] and EISPACK [29] discussed in this paper and implemented in
B34S (Stokes [31, 32]) are being made available for other researchers to be freely used in any software
systems, provided that attribution is given. The FTP library for this material is available under the research
page of www.uic.edu/~hhstokes. The file sourc3.f contains changes and additions made to LINPACK,
BLAS and EISPACK. Other public domain code, such as FFTPACK, which was not modified, is also
present in this file. Fortran code in this library can be freely placed in any software code, provided that
attribution is made to the source. The nature of these changes will be discussed later in this paper. The file
sourc2.f contains the LAPACK [1] library used and is basically unchanged over what is available from
netlib. Comments on the routines in sourc3.f are welcome and should be addressed to hhstokes@uic.edu. In
addition to these libraries, all jobs (that include data sets) and output that are used in this paper are shown.
9 Modern software systems, such as SAS [2] and RATS [4], save data in real*8 or double precision and
thus make the decision on data storage for the user. Up until recently this was the case for Matlab [12].
However, with the recent release (version 7.0 R14) this is no longer true. While the default data storage
precision is real*8, real*4 is also supported. The decision on precision for data storage becomes more
critical, since uninformed users can make a wrong choice. Results in this paper to be shown latter suggest
that substantial gains in accuracy can be made if data is saved internally in real*16, not the default real*8.
This finding suggests that real*4 storage of data may be more dangerous than previously thought. Renfro
[26] in 1980 and more recently in a major paper in 1997 [25] has discussed data base system standards. In
Figure (1) of Renfro [25], there is a precision capability where in single precision 6-7 digits are saved while
in double precision 12-14 digits are saved. The results reported later in this paper suggest the former
standard may be less than optimum, especially for data in log form.

 4

http://www.uic.edu/~hhstokes
mailto:hhstokes@uic.edu

2. Brief notes on various approaches to making and improving an OLS Model

2.1 Problems in solving an OLS model using the usual formulas

 Since (')X X is a positive definite matrix , if the system is full rank, rather than
using a LU factorization to calculate the inverse, one way to proceed is to perform
Cholesky decomposition and express (') 'X X R R= where 'R is lower triangular. Rather
than forming (')X X and losing accuracy in the process, the QR approach expresses

'
0
R

Q X  
=  
 

 where Q is N by N and orthogonal (')IQ Q = . The QR approach to obtaining

R is substantially more accurate, particularly in a number of difficult problems shown
later. Once the QR factorization is performed, 1 'ˆ R Q y−β = . If 1(')X X − is needed to
obtain the SE, the more accurate R obtained from the QR factorization of X can be used
in place of the R obtained from a Cholesky factorization of 'X X to obtain 1(')X X − .
The SVD approach factors 'X U= Θ

1 1) 'V U− −= Θ

V

1 'y V U y−= Θ

 where U is N by K, V is K by K and U and V are
orthogonal. Θ is a diagonal matrix with the singular values along the diagonal.10 It is
easy to show that . Since calculation of (β̂ (' 1)'X X − is needed
to obtain the SE of a OLS model, this can be obtained very quickly since it can be shown
that (' 1 2 ')X X V− = Θ V− since 2) '('X X V V= Θ and V 1' V −≡ . A problem arises in cases
when the diagonal elements of get very small due to multicollinearity and thus become
very large when forming , causing numerical problems.

Θ
2−Θ

2.2 Simple modifications to BLAS to improve accuracy

In an important and widely cited paper, McCullough and Vinod [14] argued that
the standard formula would not calculate the variance accurately in a number of test
cases,11 while their "corrected" formula would. While this was a useful and important
exercise to raise the consciousness of software developers on the need for numerical
accuracy, the fact that the variance formula in many software systems was subsequently
improved, and the software subsequently passed the benchmark test, gave no assurance
that the rest of the program was sufficiently accurate. Furthermore, there was no really
good way to test the sensitivity of results to accuracy without extensive and often
impractical code modifications. The BLAS routines, released in 1979 by Lawson and
others [10], provided a fast and modular way to perform basic calculations. The BLAS
was extensively used in LINPACK [5] and subsequently extended to BLAS levels 2 and
3 and used in LAPACK [1]. If these routines are used throughout a software system, then

10 The singular values s(i) of X are the square root of the eigenvalues of 'X X '. Thus[(is the
condition of the matrix

21) / ()]s s k
'X X

1)

, since the singular values are ordered from large to small. The singular
values of X'X are in fact the eigenvalues sorted from largest to smallest. If the condition of X'X is 10d then
the elements of ('X X

'

− "can usually be expected to have fewer significant figures of accuracy that the
elements of " X X LINPACK [5, page 1.1].
11 While the text book formula for the variance is 2() /(x x n 1)− −∑ , a formula less likely to have

rounding error is 2 2
1 1

1 1{ () [()]
(1

n n
i ii i

x x x x
n n= =

− − −
− ∑ ∑ }.

 5

changes in accuracy of basic calculations, such as dot product (
1

n

i i
i

a x
=

= y∑),

summation and elementary vector operations (
1

n

i
i

a
=

= ∑ x y ax y= +), can be changed in

one place and their effect on the resulting accuracy of calculations measured in many
other places. The B34S (Stokes [31, 32]) made these changes and the code for these
improvements has been released as part of this article.12 A partial list of the key real*8
BLAS routines is given in Table 1. Real*4 routines are not listed to save space.

12 The changes to BLAS for inner products were to DDOT/ZDOTU/ZDOTC/QDOT/CQDOTU and
CQDOTC. For summation DSUM/ZSUM/QSUM/CQSUM were changed. The absolute sum routines
DASUM/QASUM were also changed as were the scale routines DSCAL/ZSCAL/QSCAL/CQSCAL and
the transformation routines DAXPY/ZAXPY/QAXPY/CQAXPY. It is to be noted that the Qxxxx and
CQxxxx routines were developed for B34S and are used to increase accuracy of real*16 and complex*32
data types. These are not the BLAS names.

 6

Table 1

Partial List of Improvements to BLAS
__
subroutine real16add(i) Controls math accuracy

Scale a vector
subroutine dscal(n,da,dx,incx) Linpack
subroutine dqdscal(n,da,dx,incx) Math done in real*16
subroutine cqscal(n,za,zx,incx) complex*32 za complex*32
subroutine cqqscal(n,da,zx,incx) complex*32 da real*16
subroutine qscal(n,da,dx,incx) real*16
subroutine zscal(n,za,zx,incx) Linpack
subroutine zdscal(n,da,zx,incx) Linpack

Swap vectors for various precisions
subroutine dswap(n,dx,incx,dy,incy) Linpack
subroutine zswap(n,zx,incx,zy,incy) complex*16
subroutine qswap(n,dx,incx,dy,incy) real*16
subroutine cqswap(n,dx,incx,dy,incy) complex*32

Dot product
integer function idot(n,dx,incx,dy,incy)
real*8 function ddot(n,dx,incx,dy,incy) Linpack
real*8 function ddot_16(n,dx,incx,dy,incy) High accuracy using IMSL
real*8 function ddot_2(n,dx,incx,dy,incy) ACC2
real*16 function qdot(n,dx,incx,dy,incy) Real*16

Accuracy improvements to real*8 calculations
real*16 function qdble(x) real*8 to real*16
real*16 function qqdmult(a,b) real*16 mult of real*8
real*8 function dqdmult(a,b) real*16 mult of real*8
real*16 function qqdadd(a,b) real*16 add of real*8
real*8 function dqdadd(a,b) real*16 add of real*8
real*16 function qqdsub(a,b) real*16 sub of real*8
real*8 function dqdsub(a,b) real*16 sub of real*8
real*16 function qqddiv(a,b) real*16 div of real*8
real*8 function dqddiv(a,b) real*16 div of real*8
real*16 function qqdpow(a,b) real*16 ** of real*8
real*8 function dqdpow(a,b) real*16 ** of real*8

Sum absolute values
real*8 function dasum(n,dx,incx) Linpack
real*8 function dqdasum(n,dx,incx) real16add path
real*8 function dasum_2(n,dx,incx) acc2 path
real*8 function dzasum(n,zx,incx) Linpack
real*16 function qcqasum(n,zx,incx) complex*32 version
real*16 function qasum(n,dx,incx) real*16 version

Sum of a vector
real*8 function dsum(n,dx,incx) Linpack
real*8 function dqdsum(n,dx,incx) real16add path
real*8 function dsum_2(n,dx,incx) acc2
real*16 function qsum(n,dx,incx) real*16 version
real*16 function qsum_2(n,dx,incx) high accuracy real*16
complex*32 function cqsum(n,dx,incx) complex*32 version
integer function isum(n,dx,incx) integer*4
double complex function zsum(n,dx,incx) complex*16

Constant times a vector plus a vector
subroutine daxpy(n,da,dx,incx,dy,incy) Linpack
subroutine dqdaxpy(n,da,dx,incx,dy,incy) Real16add path
subroutine qaxpy(n,da,dx,incx,dy,incy) Real*16 version
subroutine cqaxpy(n,za,zx,incx,zy,incy) Complex*32 version

 7

 As an example of what is involved in enhancing a BLAS routine, consider DDOT,
which was modified as

 real*8 function ddot(n,dx,incx,dy,incy)
c
c forms the dot product of two vectors.
c This version has been simplified to not use unrolled loops.
c It is intended to show the simple changes needed to implement
c different accuracy paths. The unrolled loop version should be
c used in production code.
c
c Note: => dqddot is an IMSL routine!
c => ddot_16 uses HHS real*16 mult
c
 implicit real*8(a-h,o-z)
 double precision dx(*),dy(*),dtemp,ddot_16,dqddot
 integer i,incx,incy,ix,iy,m,mp1,n
 logical ison
 common/real16/ison(3)
 save /real16/
c
 dtemp = 0.0d0
 ddot = 0.0d0
 if(n.le.0)return
c
 if(ison(1))then
 if(ison(2)) ddot=dqddot(n,dtemp,dx,incx,dy,incy)
 if(.not.ison(2))ddot=ddot_16(n,dx,incx,dy,incy)
 return
 endif
c
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
c
 do i = 1,n
 dtemp = dtemp + (dx(ix)*dy(iy))
 ix = ix + incx
 iy = iy + incy
 enddo
c
 ddot = dtemp
 return
 end

to allow a branch to dqddot if ison(1) and ison(2) were .true. and ddot_16
if ison(1) was .true. and ison(2) was .false. . The routine ddot_16 does
real*16 math internally and has the same accuracy as dqddot. A version without
unrolled loops is

 8

 real*8 function ddot_16(n,dx,incx,dy,incy)
 implicit real*8(a-h,o-z)
c
c forms the dot product of two real*8 vectors.
c uses real*16 math
c
 real*8 dx(*),dy(*),dbleq
 real*16 qqdmult,dtemp
 integer i,incx,incy,ix,iy,m,mp1,n
c
 dtemp = 0.0q0
 ddot_16 = 0.0d0
 if(n.le.0)return
c
 ix = 1
 iy = 1
 if(incx.lt.0)ix = (-n+1)*incx + 1
 if(incy.lt.0)iy = (-n+1)*incy + 1
c
 do i = 1,n
 dtemp = dtemp + qqdmult(dx(ix),dy(iy))
 ix = ix + incx
 iy = iy + incy
 enddo
c
 ddot_16 = dbleq(dtemp)
 return
 end

where qqdmult multiplies two real*8 numbers in real*16 and saves the result in
real*16.

 real*16 function qqdmult(a,b)
 implicit real*16(a-h,o-z)
c
c multiplies two real*8 numbers in real*16
c saves in real*16
c built 26 May 2003 by Houston H. Stokes
c
 real*8 a,b
 external qdble
c
 qqdmult=qdble(a)*qdble(b)
 return
 end

As will be shown later ddot_16 allows the inner product summation and multiplication
to be done in real*16 and returns the answer in real*8, which improves accuracy every
place that DDOT is called. The routine dqddot is an IMSL [20] routine that does the
same thing as ddot_16 except faster since it uses the IMSL routines DQINI, DQADD,
DQMUL and DQSTO, which operate using real*8 math but give real*16 accuracy. When
64 bit hardware and compilers are available, the reverse will most likely be true. The
multiplication calculation in ddot_16 could be replaced with inline code if
qqdmult(dx(ix),dy(iy)) was replaced by
qdble(dx(ix))*qdble(dy(iy)). The reason this was not done was to

 9

experiment with and isolate real*8 to real*16 conversion in one routine, qdble which
is listed next:

 real*16 function qdble(x)
c
c function to convert real*8 to real*16
c
 real*8 x
 real*16 y
 call r8tor16(x,y)
 qdble=y
 return
 end
 subroutine r8tor16(x,y)
 real*8 x
 real*16 y
c
c real*8 to real*16 conversion since no fortran
c function.
c
 y=x
c
 return
 end

Real*16 math accuracy can be enhanced by use of routines QVXADD, QVXMUL
and QVXSTO, which were developed based on logic from no longer supported IMSL
code from the 1980's. The routine LGCOPY is similar to the BLAS routine DCOPY,
except that logical*1 data is copied to zero out portions of the real*16 number to perform
the split.

 subroutine qvxadd(a,acc)
c
c purpose - extended precision add - better than real*16
c
c usage - call qvxadd (a,acc)
c
c arguments a - real*16 number to be added to the
c accumulator. (input)
c acc - accumulator. (input and output)
c acc is a real*16 vector of length
c 2. on output, acc contains the sum of
c input acc and a.
c
 real*16 a,acc(2),x,y,z,zz
c
 x = acc(1)
 y = a
 if (qabs(acc(1)).ge.qabs(a)) go to 1
 x = a
 y = acc(1)
c compute z+zz = acc(1)+a exactly
 1 z = x+y
 zz = (x-z)+y
c compute zz+acc(2) using real*16 math
 zz = zz+acc(2)
c compute acc(1)+acc(2) = z+zz exactly
 acc(1) = z+zz
 acc(2) = (z-acc(1))+zz

 10

 return
 end
 subroutine qvxmul(a,b,acc)
c
c purpose - real*16 extended precision (better than
c real*16 multiply)
c
c usage - call qvxmul (a,b,acc)
c
c arguments a - input real*16 number
c b - input real*16 number
c acc - accumulator. (input and output)
c acc is a real*16 vector of length
c 2. on output, acc contains the sum of
c input acc and a*b.
c
c logic changed 1 October 2004 by Houston H. Stokes for real*16
c
 real*16 a,b,acc(2),x,ha,ta,hb,tb
 logical lx(16)
 equivalence (x,lx(1))
c
c logic split a = ha+ta
c b = hb+tb
c compute ha*hb,ha*tb,ta*hb, and ta*tb
c and call qvxadd to accumulate the sum
c
 x=a
 ha=0.0q+00
 call lgcopy(8,.true.,0,lx,1)
 ha=x
 ta=a-ha
 x=b
 hb=0.0q+00
 call lgcopy(8,.true.,0,lx,1)
 hb=x
 tb=b-hb
c
 x = ta*tb
 call qvxadd(x,acc)
 x = ha*tb
 call qvxadd(x,acc)
 x = ta*hb
 call qvxadd(x,acc)
 x = ha*hb
 call qvxadd(x,acc)
 return
 end
 subroutine qvxsto(acc,d)
c
c routine built by Houston H. Stokes
c purpose - real*16 store. (Better than real*16)
c
c usage - call qvxsto(acc,d)
c
c arguments acc - accumulator. (input)
c acc is a real*16 vector of length
c 2. acc is assumed to be the result of
c calling qvxadd or qvxmul to perform extended
c precision operations.
c d - real*16 scalar. (output)
c on output, d contains a double precision
c approximation to the value of the extended
c precision accumulator.
c
 real*16 acc(2),d
c first executable statement

 11

 d = acc(1)+acc(2)
 return
 end

 While enhancements to BLAS routines to provide additional accuracy are a
relatively easy way to increase the accuracy of currently running code developed using
real*8 and complex*16, the development of real*16 and complex*32 versions of key
routines in EISPACK [29] and LINPACK [5] will be shown to provide further, and in
many cases needed, accuracy for difficult problems.

2.3 Effect of data storage in memory and data reading

 While most modern software systems save data in real*8, there are exceptions
that save data in real*4 by default.13 A related problem is data base systems that save
transformed data in real*4 and thus negatively impact being able to perform accurate
calculation of some statistical procedures.14 With 64 bit hardware computing on the
horizon and 64 bit software-based computing possible, it is important to see the effect of
data storage on accuracy.15 While the usual approach is just to boost accuracy for a
calculation, evidence shown later in this paper suggests that much is lost by this
approach. For difficult problems, more accuracy can be obtained if data are read directly
into a real*16 variable. This will be shown later using the StRD [27] Filippelli data set.
While the Filippelli OLS data set, if read into a real*8 variable, will not solve with a
Cholesky factorization, if the data are loaded into a real*16 variable, more accuracy than
the QR on real*8 data is obtained with a Cholesky factorization.16 However, if the same
data were directly loaded in real*16, then many more accurate digits are obtained. This
finding, which will be discussed in some detail later, suggests a number of important
things. First, a data copy into real*16 from real*8 can help but is no substitute for a direct
read into real*16. While it could be said that the Filippelli data set is known to cause
problems and that the findings are not relevant for most problems, it remains interesting
to see what happens when one can see a difference.

2.4 Accuracy issues involving the variance

To test if the McCullough-Vinod [14] formula was actually needed to calculate
the variance, the StRD Numerical-Accuracy-4 data set, which provides the "stiffest"

13 McCullough [17 page 152] discussed problems of real*4 data storage. He notes, "… users should also be
aware that single-precision storage can have an adverse effect on accuracy, even when the input data are
single-precision." SCA is an example of a software system that saves data in real*4 by default, although
real*8 storage is also possible. The effect of real*4 data storage on accuracy is studied later with the
Pontius data set.
14 Since the B34S allows data to be transformed to real*4 and then recopied back to real*8, it is possible to
simulate the effect of real*4 databanks.
15 Fortran 77 has had the data types REAL*16 and COMPLEX*32 for many years. The implementation of
arithmetic using these data precisions was software-based and slow. With 64 bit machines available, these
calculations will substantially speed up in the future as hardware solutions will be implemented.
16 The QR using real*16 data is still more accurate, although for data converted from real*8 to real*16,
both the Cholesky and the QR will have the same degree of accuracy. The Filippelli problem, when
estimated with RATS [4] version 6.03, gives no indication that there is a problem except producing some
0.0 coefficients. If the same problem is run with the SAS ORTHOREG procedure, no correct coefficients
are produced and 9β is set to missing. Table 10, discussed in section 4, documents a real*16 Filippelli
benchmark developed with variable precision arithmetic.

 12

variance calculation, was selected. Here the sample mean, standard deviation and
autocorrelation are known exactly and are 10000000.2, .1 and -.999, respectively. To
measure the number of significant digits in the answer, McCullough [16] suggests using
the log relative error, defined as 10log (| | / | |LRE x c c= − − for c 0≠ and 10log (| |)x−
otherwise, where x = the answer obtained and c = the "correct" or target answer. Using
the standard B34S17 matrix command formulas for the mean, standard deviation and auto
correlation, the answers obtained for the above problem were, respectively,
10000000.20000000, 0.1000000005587935 and -0.9989999999813732. These give
LRE values of 15.0, 8.25 and 10.73 respectively.18 The test data set consists of 1001
observations of three data values (10000000.2, 10000000.1, 10000000.3). A number of
tests were run, using first the default B34S variance routine that consists of both the
McCullough-Vinod formula and high accuracy summation and product enhancements
and, second, the traditional formula (programmed with the B34S matrix command
language), with and without accuracy enhancements. Both approaches were run on real*8
data, real*8 data copied to real*16 and data read directly into real*16. The results are
listed in Table 2.

17 All calculations have been done using the B34S MATRIX command unless otherwise stated.
18 The error of the autocorrelation was -0.1862676679564856E-10, which is clearly acceptable for most
work. The same can be said for the standard deviation calculation. As will be shown later, the LRE value
can be increased to 26.31 if data are read into real*16 and real*16 math is used. McCullough [18 page 17]
obtained LRE values of 15, 8.3 and 15 for real*8 data.

 13

Table 2. The Effect of Formulas and Data Precision on Standard Deviation Calculation

Experiment # 1 No Accuracy improvements for Case B. Real*8 Data
Case A 0.1000000005587935 LRE 8.25
Case B 0.1000000005588410 LRE 8.25

Experiment # 2 Accuracy improvements for Case B. Real*8 Data
Case B 0.1000000005587935 LRE 8.25

Experiment # 3 Real*8 to Real*16 Data. No accuracy improvements
Case A 0.10000000055879354477361958556452 LRE 8.25
Case B 0.10000000055879354477361958556452 LRE 8.25

Experiment # 4 Data read directly into Real*16
Case A 0.10000000000000000000000000048468 LRE 26.31
Case B 0.10000000000000000000000000048468 LRE 26.31

Experiment # 5 Real 8 to Real*16 Data. Real32 accuracy on
+++++++++++ converted real*16 ++++++++++++++++
Case A 0.10000000055879354477361958556452 LRE 8.25
Case B 0.10000000055879354477361958556452 LRE 8.25 +++++++++++

Experiment # 6 Data read directly into real*16. Real32 on.
Case A 0.10000000000000000000000000048468 LRE 26.31
Case B 0.10000000000000000000000000048468 LRE 26.31

Case A uses the high accuracy formula with high accuracy enhancements.
Case B uses the standard formula as listed in footnote 9.
LRE is the McCullough [16] accuracy measure. The exact answer is .1.

In experiment # 1 for real*8 data the LRE was the same for both approaches (8.25) but
the answers were slightly different. In experiment # 2 BLAS accuracy enhancements are
turned on and both approaches obtain the same answer. This suggests that the real*8
accuracy enhancements obviate the need for the "correct" variance formula discussed in
footnote 11.

Experiment # 3 copies the data to real*16 from real*8, makes all calculations in real*16
and observes no accuracy gain. Experiment # 4, however, reads the data directly into
real*16 before making calculations in real*16 and obtains a LRE of 26.31, a substantial
gain. The importance of this is that the data storage precision makes a difference. If
calculations are desired in real*16, for difficult problems it is imperative that accuracy
not be lost in the initial data read, where truncation errors occur due to inexact binary
representation, especially for "stiff" data. While it is known that this problem may occur,
the above example illustrates the nature of the loss. Reading into real*16 directly makes a
major difference. Experiments # 5 and # 6 test if accuracy enhancements to real*16
calculations, using QVXADD, QVXMUL and QVXSTO, will make a difference. The
finding is that for this problem it does not make a difference. Variable precision
arithmetic calculation, not shown in the table, using 60 digits of accuracy produces the
exact answer.

2.5 Speed issues for the SVD

 14

 Press et al [21] advise use of the QR or SVD but remarks that there are speed
disadvantages of the SVD. While results presented in the next section suggest that there
can be some accuracy losses using the SVD, this section will address the speed issues of
two SVD candidates using two types of CPU. In test # 1, reported on the top of Table 3,
the results suggest that up to a matrix of order 400, LINPACK is faster, while for larger
systems LAPACK runs more quickly. These tests were run on a Dell Latitude running a
1.1 Gh processor and Windows 2000. Since most problems involving OLS are for
matrices of order less than 350, the choice appeared to be to use LINPACK, based on
speed of calculation for these matrices and LAPACK for systems bigger than order 350.
However, when the above tests are run on a Dell 650 workstation running a 3.05 Xeon
chip and Windows XP, there appears to be no speed gain if LAPACK is used for large
systems. Due to the chip design, there were measured performance gains for both
routines.19 For example, when we compare 600-order systems to 200-order systems on
the Dell Latitude, the time increased 84.6 fold (27.96/.3305) for LINPACK and 52.3
(20.43/.3906) for LAPACK. For tests using the Xeon chip, these numbers were 38.1
(4.766/.1250) and 37.7 (6.484/.1719), respectively. For LAPACK the optimum
workspace was set by the routine on the first call. For all tests the singular values Θ , the
first K rows of U and the full V was calculated. The square matrices used were built
using the IMSL [20] random normal generator. In the next section the two SVD code
choices are tested for accuracy differences.

Table 3. Speed Differences of the SVD Calculation by CPU Type and Matrix Size

Test 1 Relative Speed of Linpack/LAPACK SVD on Dell Latitude 1.1 Gh

Obs ORDER LINPACK LAPACK RATIO
 1 150.0 0.1302 0.1302 1.000
 2 200.0 0.3305 0.3906 0.8462
 3 250.0 0.8112 1.001 0.8100
 4 300.0 1.793 2.063 0.8689
 5 350.0 3.405 3.555 0.9577
 6 400.0 5.798 5.778 1.003
 7 450.0 8.863 8.132 1.090
 8 500.0 12.60 12.30 1.024
 9 550.0 21.10 15.49 1.362
 10 600.0 27.96 20.43 1.369

Test 2 Relative Speed of Linpack/LAPACK SVD on DELL 650 3.05 Gh Xeon

Obs ORDER LINPACK LAPACK RATIO
 1 150.0 0.4688E-01 0.6250E-01 0.7500
 2 200.0 0.1250 0.1719 0.7273
 3 250.0 0.2344 0.3750 0.6250
 4 300.0 0.5312 0.7344 0.7234
 5 350.0 0.8906 1.203 0.7403
 6 400.0 1.359 1.906 0.7131
 7 450.0 1.969 2.594 0.7590
 8 500.0 2.703 3.641 0.7425
 9 550.0 3.656 4.781 0.7647
 10 600.0 4.766 6.484 0.7349

The LINPACK SVD routine used was DSVDC, while for LAPACK DGESVD was used.

19 To test if this finding was due to Windows 2000 vs XP, the above exercise was run on a Dell Xeon
workstation running Red Hat Linux and having 2.5 Gh chips. Results comparable to the Xeon results
reported in Table 3 were obtained. This suggests it is multi-thread chip design that is causing the difference.
All tests were run using Lahey version 7. Fortran compilers. The developers of LAPACK [1] have noticed
similar CPU design-sensitive effects. Their results, done in 1992, did not include modern Intel chips.

 15

3. Results for OLS Models

3.1 Filippelli polynomial data set

x e

To measure the effects of data precision and calculation method on accuracy
requires a number of different test data sets. The first problem attempted was the StRD
[27] Filippelli data set, which contains 82 observations on a polynomial model of the

form where x ranges from -3.13200249 to -8.781464495 and
10

0
1

i
i

i

y β β
=

= + +∑ 10x

ranges from 90,828.258 to 2,726,901,792.451598. Answers to 15 digits are supplied by
StRD.20 Table 4 reports 15 experiments involving various ways to estimate the model.
The LINPACK Cholesky routines and general matrix routines detect rank problems and
will not solve the problem if the data are not converted to real*16. The QR approach
obtains an average LRE of 7.306, 7.415 and 8.368 on the coefficients, SE and residual
sum of squares. The exact numbers obtained are listed in Table 5. If the accuracy
improvements for the BLAS routines suggested in section 2.2 are enabled, these LRE
numbers jump to 8.118, 8.098 and 9.803, respectively. Note that both accuracy
improvements result in the same gain. Experiments # 4 and # 5 first copy the data that
have been first read into real*8 into a real*16 variable and attempt estimation with a
Cholesky and a QR approach. The LRE's are the same for both approaches (7.925, 8.708,
8.167). This experiment shows the effect of calculation precision and at first would lead
one to believe that there is little gain obtained using real*16 calculation except for the
fact that the Cholesky condition is not seen as 0.0. However, this interpretation would be
premature without checking for data base precision effects (i. e., at what precision was
the data initially read), which we do below.

Experiments 6-12 test various combinations of calculation precision and routine
selection. In Experiment # 6 we use the LINPACLK SVD routines on real*8 data. The
results are poor (LRE numbers of 2.195, 2.132 and 4.039).21 When the accuracy
improvements are enabled, (experiment 7 and 8), there is a slight loss of accuracy on the
coefficients to 1.901 but a slight gain on the SE to 2.431 . However, when the real*8 data
are copied to real*16 in experiment 9, the SVD LRE numbers jump to 7.924, 8.708 and
8.167, respectively, which are similar to what was found in experiments 4 and 5 and
show clearly the effect of calculation precision conditional on data reading into real*8
before the data are moved to real*16. These results are similar to those in the real*16
Cholesky experiment 4 and the real*16 QR experiment 5.

20 StRD documentation reports that while 15 digits are given, due to truncation, the answers are certified up
to the last digit. To summarize accuracy, the average LRE value is given for each model. Moler [19,
Chapter 5] discussed this data set in problem 5.10 noting that this problem is "controversial" and that there
are "several opinions about whether or not this is a reasonable problem." There is no disagreement over the
fact that this is a hard problem and thus makes an excellent candidate for stressing a solution method or
software implementation. McCullough [17] reports no solution for SAS or SPSS but LRE values of 7.1, 7.0
and 7.8 for SPLUS for coefficients, SE and r, respectively. These LRE values are in line with what one
would expect with a QR solution using real*8 data. Somewhat better results are reported for B34S in Table
4.
21 The author has used the LINPACK code since 1979. These results were not expected and seem to be
related to the extreme values in the X matrix in the Filippelli data. When real*16 is used, accuracy of the
LINPACK SVD routine improves.

 16

 Experiments 10-12 study the effect of using LAPACK's SVD routine in place of
LINPACK. For experiment 10, the coefficient LRE jumps to 7.490, which is quite good
and in fact beats the QR LRE reported for experiment 1. This value is far better than the
LINPACK LRE of 2.195.22 However, the LRE of the SE is poor with a LRE of 1.910,
which is less than that found with the LINPACK code of 2.132. The LRE of of
1.606 is also less than the LINPACK LRE of 3.258. Since the SE requires knowledge of

'e e

1(')X X − , calculated as 1 2(') 'X X V V− −= Θ
2

, extreme values along the diagonal of may
be causing errors when forming

Θ
−Θ . However, this possibility does not explain the poor

performance of the residual sum of squares LRE of 1.606.23 The reason may be related to
the fact that the data set has such high 10x values that minor coefficient differences will
result in substantial changes in the relative residual sum of squares.

Experiments 13-15 first load the data in real*16 and proceed to the same routines
as used for experiments 4 - 6. Here we see LRE numbers of 14.68 14.99 and 15.00 for
the Cholesky experiment and 14.79, 14.96 15.00 for the QR experiment which is the
same as SVD (LINPACK). These are close to perfect answers. Table 5 lists the
coefficients obtained for experiment 1, which used real*8 data while Table 6 lists the
exact coefficients obtained for the QR using data read directly into real*16. Experiments
13-15 show gain from reading the Filippelli data set in real*16. Since all there
experiments produced similar LRE values, it suggests that if the data are read with
enough precision, the results are less sensitive to the estimation method. This finding has
important implications for data base design and is similar to what was found with the
variance calculations in section 2. The next task is to study less extreme (stiff) data sets
and observe the results.

22 McCullough [18] Used LAPACK QR and SVD routines to estimate the coefficients of the Filippelli data
finding that "QR generally returns more accurate digits than SVD." The LRE values found were 7.4 and 6.3
respectively. For S-PLUS he found 8.4 and 5.8, respectively, where the underlying routines were not
known.
23 The sum of squares was tested against the published value of 0.795851382172941E-03. The LAPACK
SVD routine obtained 0.8155689538070673E-03.

 17

Table 4. LRE for Various Approaches to an OLS Model of the Filippelli Data

Various options of real*8 data

Experiment TYPE COEF SE RSS_LE
 1 QR 7.306 7.415 8.368
 2 ACC_1 8.118 8.098 9.803
 3 ACC_2 8.118 8.098 9.803
 4 R16_CHOL 7.924 8.708 8.167
 5 R16_QR 7.924 8.708 8.167
 6 SVD 2.195 2.132 4.039
 7 SVD_ACC1 1.901 2.431 3.258
 8 SVD_ACC2 1.901 2.431 3.258
 9 SVD_R16 7.924 8.708 8.167
 10 SVD_LAPK 7.490 1.910 1.606
 11 SVD2ACC1 7.490 1.910 1.606
 12 SVD2ACC2 7.490 1.910 1.606

Various Options using Data read directly in real*16

 13 R16_CHOL 14.68 14.99 15.00
 14 R16_QR 14.79 14.96 15.00
 15 R16_SVD 14.79 14.96 15.00

Experiments 4, 5 and 9 involve reading data first into real*8 and then converting the data
to real*16. Experiments 1-3, 6-8 and 10-12 involve real*8 data. Experiments 13-15 use
data read directly into real*16. See section 2.1 for a detailed discussion of the methods
used, the data and the software and settings involved. The coefficients obtained for
experiment # 1 and 14 are listed in Tables 5 and 6.

 18

Table 5 Coefficients and SE Estimated Using QR on Real*8 Filippelli Data
__
 Test Value Value Obtained LRE
Coef 1 -2772.179591933420 -2772.179723094652 7.33
Coef 2 -2316.371081608930 -2316.371192269638 7.32
Coef 3 -1127.973940983720 -1127.973995395338 7.32
Coef 4 -354.4782337033490 -354.4782509735776 7.31
Coef 5 -75.12420173937571 -75.12420543777237 7.31
Coef 6 -10.87531803553430 -10.87531857690271 7.30
Coef 7 -1.062214985889470 -1.062215039398714 7.30
Coef 8 -0.6701911545934081E-01 -0.6701911887876555E-01 7.29
Coef 9 -0.2467810782754790E-02 -0.2467810910390330E-02 7.29
Coef 10 -0.4029625250804040E-04 -0.4029625462234867E-04 7.28
Coef 11 -1467.489614229800 -1467.489683023960 7.33

Mean LRE 7.306448565286121
Variance LRE 2.587670394878226E-04
Minimum LRE 7.280096349919187
Maximum LRE 7.329023461850447

SE 1 559.7798654749500 559.7798867059487 7.42
SE 2 466.4775721277960 466.4775900975754 7.41
SE 3 227.2042744777510 227.2042833290517 7.41
SE 4 71.64786608759270 71.64786889794284 7.41
SE 5 15.28971787474000 15.28971847592676 7.41
SE 6 2.236911598160330 2.236911685945726 7.41
SE 7 0.2216243219342270 0.2216243305780890 7.41
SE 8 0.1423637631547240E-01 0.1423637686503493E-01 7.41
SE 9 0.5356174088898210E-03 0.5356174292732132E-03 7.42
SE 10 0.8966328373738681E-05 0.8966328708850490E-05 7.43
SE 11 298.0845309955370 298.0845420801842 7.43

Mean LRE 7.414701487211084
Variance LRE 7.386168559949404E-05
Minimum LRE 7.405390067654106
Maximum LRE 7.429617565744895

Residual sum of squares:
RSS 0.7958513821729410E-03 0.7958513787598208E-03 8.37

__
Test values are reported on the left-hand side. LRE = log relative error. The coefficients
report experiment # 1 from Table 4. The same LINPACK QR routine was modified by
Stokes [31, 32] to run for real*16 data. Results for this experiment are shown in Table 6.

 19

Table 6 Coefficients estimated with QR using Real*16 Filippelli Data

Coefficients Using QR on Data Loaded into Real*16

 LRE
1. –2772.1795919334239280284475535721 14.85
2. –2316.3710816089307588219679140978 15.00
3. –1127.9739409837156985716700141998 14.42
4. –354.47823370334877161073848496470 15.00
5. –75.124201739375713890522075522684 15.00
6. –10.875318035534251085281081177145 14.35
7. –1.0622149858894676645966112202356 14.66
8. –0.67019115459340837592673412281191E-01 15.00
9. –0.24678107827547865084085445245647E-02 14.85
10. –0.40296252508040367129713154870917E-04 15.00
11. –1467.4896142297958822878485135961 14.55

Mean LRE 14.788490320266543980835382276091684
Variance LRE 6.3569618908829012635712782954099325E-0002
Minimum LRE 14.347002403969724322813759016211991
Maximum LRE 15.000000000000000000000000000000000

SE Using QR on DATA Loaded into Real*16 LRE
1. 559.77986547494987457477254797527 15.00
2. 466.47757212779645269310982974610 15.00
3. 227.20427447775131062939817526228 14.86
4. 71.647866087592737261665720850718 15.00
5. 15.289717874740006503075678978592 15.00
6. 2.2369115981603327555186234039771 14.91
7. 0.22162432193422740206612983379340 14.74
8. 0.14236376315472394891823309147959E-01 15.00
9. 0.53561740888982093625865193118466E-03 15.00
10. 0.89663283737386822210041526987951E-05 15.00
11. 298.08453099553698520055234224439 15.00

Mean LRE 14.955903576675283545444986642213045
Variance LRE 7.2174779096858864768608287934814669E-0003
Minimum LRE 14.741319930323011772906976043000329
Maximum LRE 15.000000000000000000000000000000000

Residual sum of squares
0.79585138217294058848463068814293E-03 15.00

LRE = log relative error. This is experiment # 14 from Table 4. LINPACK QR routine
modified by Stokes [31, 32] to run with real*16 data. For this experiment the data was
read directly into real*16.

3.2 Analysis of the residual sum of squares of the Gas Furnace data

The Box-Jenkins [3] Gas Furnace data have been widely studied and modeled and
are close in difficulty to what are found in many applied models in time series. While
"correct" agreed upon answers are not available, it is possible to study the effect on the
residual sum of squares using 11 approaches reported in Table 7.24 Since OLS minimizes
the sum of squared errors, a "better" answer is one with a smaller . Using this criteria,
the LINPACK general matrix solver DGECO, Experiment 3, is "best" followed closely
by the LAPACK general matrix solver, Experiment 4, and the LINPACK SVD routine,
Experiment 10. Experiments 5 and 6 use the LAPACK general matrix solver that allows
refinement and, in the case of Experiment 6 refinement and equilibration. These
approaches did not do as well in determining a minimum and were substantially
more expensive in terms of computer time. Of interest is why Experiment 1 and

'e e

'e e

24 Since this data set does not have the rank problems found with the Filippelli data, it is possible to attempt
a number of alternative procedures. Not all these procedures should be used.

 20

Experiment 8 did not produce the same answer since they both used the LINPACK
Cholesky routines. The answer relates to the way the coefficients are calculated. In the
former case the Cholesky R is used to obtain the coefficients without explicitly forming

1(')X X − using the LINPACK routine DPOSL, while in the latter case 1(')X X − is
formed from R using DPODI. In general, the answers are very close for this exercise.

x

'e e

0β =

Table 7 Residual Sum of Squares on a VAR model of Order 6 – Gas Furnace Data
__
Residual Sum of Squares for various methods
1. OLSQ using Linpack Chosleky – solving from R 16.13858295915815
2. OLSQ using LINPACK QR 16.13858295915821
3. OLSQ using LINPACK DGECO 16.13858295915803
4. OLSQ using LAPACK DGETRE-DGECON-DGETRI 16.13858295915806
5. OLSQ using LAPACK DGESVX 16.13858295935751
6. OLSQ using LAPACK DGESVX with equilibration 16.13858295963500
7. OLSQ using LAPACK DPOTRF-DPOCON-DPTTRI 16.13858295915812
8. OLSQ using LINPACK DPOCO-DPODI 16.13858295915811
9. OLSQ using LINPACK DSICO-DSIDI 16.13858295915814
10. OLSQ using SVD Linpack 16.13858295915808
11. OLSQ using SVD Lapack 16.13858295915810

Model estimated was gasout=f(gasout{1 to 6}, gasin{1 to 6}). Data from Box-Jenkins
[3]. Data studied in Stokes [32]. Experiment 1 solves for β using Cholesky R directly.
Experiments 3-9 form 1(')X X − .

3.3 Pontius and Eberhardt data

 The StRD Pontius data are classified as of a lower level of difficulty, although
more challenging than the gas furnace data studied in the prior section. The Pontius data
consists of 40 observations of a model of the form 2

0 1 2y xβ β β= + + for a model which
is almost a perfect fit. The eigenvalues of (')X X , as calculated by the EISPACK routine
RG, were 0.8109E+13, 0.7317E+27, 3.613, giving a condition estimate that tripped
the condition tolerance in the LINPACK LU and Cholesky routines for both real*8 and
real*4 data. Calculations were "forced" by ignoring this check.25 Results are reported for
a number of experiments in Table 8 that vary precision, method of calculation and degree
of Fortran optimization for real*4 data. The base method was the QR for real*8 data
which gives a LRE = 13.54 for β . When accuracy was enabled the LRE for the SE and

 increased slightly from 12.39 to 12.51 and 12.09 to 12.21 respectively in
experiments 1 and 2. The LINPACK SVD produced a LRE of 13.92, 13.92 and 13.53 for
the coefficient, the SE and , respectively, while for LAPACK these were 13.48, 12.74 'e e

25 The same data was estimated in Windows RATS [4] version 6.0. While the reported coefficients agreed
with the benchmark for 11, 11 and 14 digits, respectively, RATS unexpectedly produced a SE of 0.0 and a t
of 0.0 for the 2β term. The "certified" coefficients and standard errors are:

 0.673565789473684E-03 0.107938612033077E-03

1β = 0.732059160401003E-06 0.157817399981659E-09

2β = -0.316081871345029E-14 0.486652849992036E-16

which produce a t for 2β of -64.95, not zero.

 21

and 12.93, respectively, in Experiments 3 and 4. Here, using accuracy as a criteria,
LINPACK edged LAPACK. Since in the Filippelli data set the reverse was found, there
appears to be no "best" SVD routine for all cases. In addition to accuracy, there are other
aspects of the selection process that include relative speed of execution (tested in Table 3
and found to be a function of the size of the problem and computer chip) and memory
requirements that are not tested here since they are published.26

Experiments 5-8 show forced LINPACK LU and Cholesky models for real*8
data. In Experiments 7-8, added accuracy in the accumulators was enabled. Slight
accuracy gains were observed, especially in the RSS calculation where the LRE jumped
from 12.77 & 12.73 to 13.23 and 13.39, respectively. What is interesting is that in this
case, even though the condition of (')X X was large, the LU and Cholesky approaches
were able to get reasonable answers. The LINPACK condition check appears to be
conservative since in the usual case the software would not attempt the solution of this
problem.

Experiments 9-14 concern real*4 data.27 Again, the QR was found to be most

accurate, with scores of 5.36, 6.01 and 5.65 for the coefficients, SE's and RSS,
respectively. These runs were made with code compiled by Lahey Fortran version 7.10
running opt = 1. When accuracy enhancement was enabled, the LRE for the SE fell from
6.01 to 4.37. This difference was traced to the fact that the BLAS routine SDOT is

optimized to hold data in registers while the higher accuracy routine SDSDOT did not
optimize to the same extent. This is shown when the same calculation was done with
opt=0. the QR SE accuracy was 4.21 and 4.37 for non-accuracy and accuracy-enabled
code respectively. Higher accuracy was observed for opt=1 LU-forced of 5.27 vs 4.80 for
opt=0 calculations. Why the forced Cholesky experiment seems to run more accurately at
opt=0 than opt=1 (see Experiment 12) is not clear. What seems to be the case is that the
level of optimization and its resulting changes in registers seems to make a detectable
difference only with real*4 precision data. A strong case can be made not to use this
precision for this problem. When real*8 calculations are used, these knife edge type
differences are not observed.

26 For LAPACK the memory was set to the suggested amount from the first call to the routine.
Experimentation with alternative LAPACK memory, possible with the B34S system implementation of
LAPACK, was not attempted for his paper.
27 Data was first read in real*8. Then the B34S routine RND() first checked for maximum and minimum
allowable real*4 size, using the Fortran functions HUGH() and TINY(). Next, the real*8 data was
written to a buffer, using g25.16, and re-read into real*4, using the format g25.16. This approach gives a
close approximation to having read the data directly into real*4. Use of the Fortran function sngl() can be
dangerous in that, among other things, range checking is not performed.

 22

Table 8 LRE for Various Estimates of Coef, SE and RSS of Pontius Data
Real*8 Data
Method COEF SE RSS
1. QR 13.54 12.39 12.09
2. QR_AC 13.52 12.51 12.21
3. SVD-LINPACK 13.92 13.92 13.53
4. SVD_LAPACK 13.48 12.74 12.93
5. LU-Forced 12.61 13.02 12.77
6. Chol-Forced 12.11 13.00 12.73
7. LU-Forced_AC 12.77 13.61 13.23
8. Chol-Forced_AC 12.17 13.63 13.39

Real*4 Data Optimization = 1
9. QR 5.36 6.01 5.65
10. QR_AC 5.36 4.37 4.06
11. LU-Forced 3.93 5.27 5.36
12. Chol-Forced 3.97 3.36 3.06
13. LU-Forced_AC 3.95 5.30 4.78
14. Chol-Forced_AC 4.01 3.32 3.02

Real*4 Data Optimization = 0

9. QR 5.36 4.21 3.91
10. QR_AC 5.36 4.37 4.06
11. LU_Forced 4.31 4.80 4.45
12. Chol_Forced 4.48 4.51 4.26
13. LU_Forced_AC 3.95 5.30 4.78
14. Chol_Forced_AC 4.16 3.79 3.48

All data were initially read in real*8. For real*4 results data were then converted to
real*4. Forced means that the LINPACK condition check has been bypassed for testing
purposes. All reported LRE values are for the means. All real*4 tests have been done
with LINPACK routines. Real*4 accumulators have not been enabled in cases where
_AC is not added to the method name.

 xThe Eberhardt data consist of 11 observations of a one input model 1y β= . The
level of difficulty is rated as average. Results are shown in Table 9. Here the Cholesky,
the LINPACK SVD and the LAPACK SVD all produce 100% identical LRE values of
14.72, 15.00 and 14.91 respectively. For the QR the Coefficient LRE was 14.72 while the
SE and residual LRE's were marginally less at 14.40 and 14.05. Here again the methods
being considered run very close together.

Table 9 LRE for QR, Cholesky, SVD LINPACK and LAPACK for Eberhardt Data

Method COEF SE RSS
QR 14.72 14.40 14.05
Chol 14.72 15.00 14.91
SVD-LINPACK 14.72 15.00 14.91
SVD-LAPACK 14.72 15.00 14.91

All data read in real*8.

 The above results suggest that in certain problems that have a high degree of
multicollinearity, the results are sensitive to the level of precision of the calculation as
well as the method of the calculation. A challenging example was the Filippelli
polynomial data set which was discussed earlier. However, the discussion was not
complete because the real*16 QR results were only compared to the 15-digit "official"
benchmark, and not a benchmark with more digits. Since real*16 will give more than 15

 23

digits of accuracy, an important final task for the next section is to extend the Filippelli
benchmark, using variable precision arithmetic to benchmark the accuracy of the real*16
results obtained.

4. Variable Precision Results

 The variable precision library developed by Smith [30] was implemented in the
B34S to extend the Filippelli benchmark and thus fully test the true accuracy of the
reported real*16 results. The LINPACK LU inversion routines DGECO, DGEFA and
DGEDI were rewritten to allow variable precision calculations. What was formerly a
real*8 variable became a 328 element real*8 vector. Simple statements, such as
A=A+B*C, had to be individually coded, using a customized pointer routine,
IVPAADD() that would address the correct element to pass to a lower level routine to
make the calculation. A simple example shows how this is done:

c
c if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k))
c
 if(vpa_logic(kindr,
 * z(ivpaadd(kindr,k,1,k,1)),'ne', vpa_work(i_zero)))then
 call vpa_mul(kindr,vpa_work(i_mone),z(ivpaadd(kindr,k,1,k,1)),
 * vpa_work(iwork(4)))
 call vpa_func_2(kindr,'sign',vpa_work(i_ek),
 * vpa_work(iwork(4)),
 * vpa_work(iwork(5)))
 call vpa_equal(kindr,vpa_work(iwork(5)),vpa_work(i_ek))
 endif

vpa_work() is a 328 by 20 work array. The line z(ivpadd(kindr,k,1,k,1)
addresses the kth element of Z, which is 328 by k, and compares it to a constant = 0.0
saved in vpa_work(i_zero). If these two variables are not equal then the three calls
are executed to solve ek = dsign(ek,-z(k)). The first call forms –z(k) and places
it in VPA_work(iwork(4)). The variable vpa_work(i_mone) contains –1.0.
Next, the SIGN function is called and the result placed in VPA_work(iwork(5)).
Finally a copy is performed. This simple example shows what is involved to "convert" a
real*8 program to do VPA math. The results can be spectacular.28

 Table 10 shows the Filippelli Data set benchmark, an extended printout of the QR
real*16 results and the expanded Filippelli benchmark calculated with VPA data to 40
digits. A ruler listed at the top table is designed to assist the reader in determining at
which digit there is a difference. Consider coefficient # 1. The VPA beta agrees with the
real*16 QR beta up to the 28th digit, which is far beyond the 15th digit, which was all that
was listed for the "benchmark" which is shown again in Table 10. The VPA experiment
documents that the real*16 calculation is in fact substantially more accurate than the best
real*8 QR, which produced, on average 7 digits, as reported in Table 5. Recall that the

28 The job vpainv, in paper_86.mac which is distributed which B34S, illustrates the gains in
accuracy for alternative precision settings. Assuming a matrix X, X*inv(X) produces off diagonal
elements in the order of |.1e-1728|, which is far superior to what can be obtained with real*4, real*8 or
real*16 results which are also shown in the test problem. The B34S VPA implementation allows these
high-accuracy calculations to be mixed with lower precision commands, using real*4, real*8 and real*16,
since data can be moved from one precision to another. This allows experimentation concerning how
sensitive the results are to accuracy settings.

 24

"converted" real*16 results (data converted from real*8 to real*16), reported in Table 4
Experiment 5, had only a marginally better LRE of 7.924 than the real*8 QR results that
found the LRE was 7.31. Although in Tables 4 & 6 it was reported that the "true"
real*16 QR results (data loaded directly into real*16), had a LRE value was 14.79, once
we had the VPA benchmark for 40 digits, it was apparent that the LRE was substantially
larger. Even calculations of the 10th and 11th coefficients, when compared with the VPA
data, produced 27 digits of accuracy. It should be remembered that these impressive
results for real*16 are due to both the accuracy of the calculation and the fact that the
data was directly read into real*16, not converted from real*8 to real*16. As we have
shown, the data base precision makes a real difference in addition to the precision of the
calculation. The important implication is that the inherent precision of the calculation
method will be no help and in fact may give misleadingly "accurate" results unless the
data is read with sufficient precision. 29

Some of the key lesions of this paper are listed in Table 11. The main finding is the
accuracy tradeoff between the precision of the data and the calculation method used. In
all cases, it is important to check for rank problems before proceeding with a calculation.
The less the precision of the data the more appropriate it is to consider higher accuracy
solution methods such as the QR and the SVD approach.30

29 In order to 100% isolate the VPA results from data reading issues, the loading of data into the VPA array
proceeded as follows. The real*16 data was printed to a character*1 array using e50.32. Next, the VPA
string input routine was used to convert this character*1 array into a VPA variable. This way both real*16
and the VPA results were using the same data. Experiments were also conducted by reading the data in
character form directly into the VPA routines. For this problem both methods of data input into VPA made
no difference since there were relative few digits. In results not reported but available in paper_86.mac,
the Filippelli problem was "extended" by adding 11 20, ,x x to the right hand side to make the problem
more difficult (stiff). Both the VPA and the native real*16 experiments were run and both successfully
solved the problem, suggesting "reserve" capability to handle a stiff problem.

30 While the main trust of the paper has been to show the effect of various factors on the number of
"correct" digits of a calculation, in applied econometric work an important consideration is how many
digits to report. If the government data is known only to k digits, many researchers argue that only k digits
of accuracy should be reported. In many situations, this is appropriate although such a practice makes it
difficult to access the underlying accuracy of the calculation routines used in the software system. Clearly if
variables such as or are to be calculated, all estimated digits should be used to insure etc. ŷ ê 0e =∑

 25

Table 10 VPA Alternative Estimates of Filippelli Data set

 10 20 30 40 50
 12345678901234567890123456789012345678901234567890
 --
 VPA BETA 1 -.2772179591933423928028447556649596044434M+4
 Real*16 QR beta -0.2772179591933423928028447553572108500000E+04
 Answer for coef -0.2772179591933420E+04
 VPA SE 1 .5597798654749498745747725508021651489727M+3
 Real*16 QR SE 0.5597798654749498745747725479752748700000E+03
 Answer for SE 0.5597798654749500E+03

 VPA BETA 2 -.2316371081608930758821967916501044936138M+4
 Real*16 QR beta -0.2316371081608930758821967914097820200000E+04
 Answer for coef -0.2316371081608930E+04
 VPA SE 2 .4664775721277964526931098320484471124838M+3
 Real*16 QR SE 0.4664775721277964526931098297461005100000E+03
 Answer for SE 0.4664775721277960E+03

 VPA BETA 3 -.1127973940983715698571670015266249731414M+4
 Real*16 QR beta -0.1127973940983715698571670014199826100000E+04
 Answer for coef -0.1127973940983720E+04
 VPA SE 3 .2272042744777513106293981763510244738352M+3
 Real*16 QR SE 0.2272042744777513106293981752622826700000E+03
 Answer for SE 0.2272042744777510E+03

 VPA BETA 4 -.3544782337033487716107384852595281875294M+3
 Real*16 QR beta -0.3544782337033487716107384849646966900000E+03
 Answer for coef -0.3544782337033490E+03
 VPA SE 4 .7164786608759273726166572118158443735326M+2
 Real*16 QR SE 0.7164786608759273726166572085071780100000E+02
 Answer for SE 0.7164786608759270E+02

 VPA BETA 5 -.7512420173937571389052207557481187222874M+2
 Real*16 QR beta -0.7512420173937571389052207552268365400000E+02
 Answer for coef -0.7512420173937570E+02
 VPA SE 5 .1528971787474000650307567904607140782062M+2
 Real*16 QR SE 0.1528971787474000650307567897859220700000E+02
 Answer for SE 0.1528971787474000E+02

 VPA BETA 6 -.1087531803553425108528108118290083531722M+2
 Real*16 QR beta -0.1087531803553425108528108117714492600000E+02
 Answer for coef -0.1087531803553430E+02
 VPA SE 6 .2236911598160332755518623413323850745016M+1
 Real*16 QR SE 0.2236911598160332755518623403977080500000E+01
 Answer for SE 0.2236911598160330E+01

 VPA BETA 7 -.1062214985889467664596611220591597363944M+1
 Real*16 QR beta -0.1062214985889467664596611220235596600000E+01
 Answer for coef -0.1062214985889470E+01
 VPA SE 7 .2216243219342274020661298346608897939687M+0
 Real*16 QR SE 0.2216243219342274020661298337934033000000E+00
 Answer for SE 0.2216243219342270E+00

 VPA BETA 8 -.6701911545934083759267341228848844976973M-1
 Real*16 QR beta -0.6701911545934083759267341228119136200000E-01
 Answer for coef -0.6701911545934080E-01
 VPA SE 8 .1423637631547239489182330919953278852498M-1
 Real*16 QR SE 0.1423637631547239489182330914795936200000E-01
 Answer for SE 0.1423637631547240E-01

 VPA BETA 9 -.2467810782754786508408544524189188555839M-2
 Real*16 QR beta -0.2467810782754786508408544524564670500000E-02
 Answer for coef -0.2467810782754790E-02
 VPA SE 9 .5356174088898209362586519329555783802279M-3
 Real*16 QR SE 0.5356174088898209362586519311846583900000E-03
 Answer for SE 0.5356174088898210E-03

 VPA BETA 10 -.4029625250804036712971315485276426445821M-4
 Real*16 QR beta -0.4029625250804036712971315487091695800000E-04
 Answer for coef -0.4029625250804040E-04
 VPA SE 10 .8966328373738682221004152725410272047808M-5
 Real*16 QR SE 0.8966328373738682221004152698795102200000E-05
 Answer for SE 0.8966328373738680E-05

 VPA BETA 11 -.1467489614229795882287848515307287127546M+4
 Real*16 QR beta -0.1467489614229795882287848513596070800000E+04
 Answer for coef -0.1467489614229800E+04
 VPA SE 11 .2980845309955369852005523437755166954313M+3
 Real*16 QR SE 0.2980845309955369852005523422443903600000E+03
 Answer for SE 0.2980845309955370E+03

 26

Table 11. Lessons to be learned from this Paper

1. The QR method of solving an OLS regression model can provided 1-2 more digits of
accuracy and in fact may be the only way to successfully solve a "stiff" or multicollinear
model.

2. The precision in which data are initially loaded into memory (for example, single
precision) impacts accuracy, even in cases when it is later moved to a higher precision
(for example double precision) for the calculation. This suggests that data should be read
into the precision in which the calculation is made to avoid numeric representation
accuracy issues that occur when the precision of the data is increased.

3. In many cases, accuracy gains can be made by boosting the precision of accumulators
such as the BLAS routines for sum, absolute sum and dot product. Such routines should
be used throughout software systems and will increase the accuracy of the variance and
other calculations. It is desirable to be able to switch on and off such accuracy
improvements to test the sensitivity of the given problem to these changes.

4. Data base design should take into account the needs of the users who may want to read
data into higher-than-usual precision. For data that is not transformed in a data bank, the
user should be able to get all reported digits of precision without rounding (due to
numeric representation) loss.

5. The new 64-bit computers will make higher-precision calculations more viable and
may prove useful for the estimation of problems requiring high precision for their
successful solution. Real*16 and complex*32 will not have to be emulated in software by
the compilers. These technological changes on the hardware side suggest that software
designers may want to offer greater than double precision math in future releases of their
products.

6. The lower the precision of the data, the more imperative it is to check for rank
problems, use high-quality numeric routines (LAPACK/LINPACK etc.) and utilize
inherently higher accuracy solution methods, such as the QR. For many problems,
however, if data are read with sufficient accuracy, this may not be needed.

 7. If data are not initially read with sufficient precision, high-accuracy methods of
calculation, such as the QR, can provide misleadingly "accurate" results that are in fact
tainted by numeric representation issues inherent in the initial data read. This initial data
"corruption" cannot be "cured" by any subsequent increase in data precision. The more
"stiff" the problem, the more this becomes an important consideration.
__

 27

5. Conclusion

 A number of import conclusions emerge from the tests run in this paper. These
have been summarized in Table 11. The first and foremost is that accuracy improvements
can and should be made to production econometric software to insure that accuracy
problems do not unexpectedly occur. The work of McCullough and Vinod [14] argued
that the software developers should use an improved formula to calculate the variance.
While technically correct, results reported in this paper suggest that if accuracy
improvements are made to a number of key BLAS routines, not only will the accuracy of
the variance calculation be improved, but, more importantly, depending on how
widespread BLAS has been implemented in the software, there will be many other
important accuracy improvements. In addition, the user has the ability to switch back and
forth to see the effect of accuracy enhancements on the results of specific problems.31

 Renfro [24, 25] has argued for data base standards. An important decision in
implementing a data base is the precision of numbers saved. It has been argued that since
we may only know numbers to a small number of digits, then single precision storage is
sufficient. The problem with this view is that while we may know only a relatively few
digits, if too small a precision is used, these digits get saved in a manner that precludes
their use later at higher precision due to accuracy of saving these few digits. If the digits
were saved in character form, then saving only the number of digits that are known would
be technically correct. This "solution" would not work if the data had been transformed to
a log for example, since more digits would be needed. Results reported in this paper
illustrate that for difficult problems it makes a difference whether real*16 calculations are
being made with data read into real*8 and then converted to real*16 versus data that are
read directly into real*16. This finding suggests that for data saved in real*4, and
analyzed in real*8, the problems may become substantially more acute.

 Press [21], McCullough and Vinod [14], Greene [7] and others have argued for
the SVD or QR approach to ordinary least squares estimation since there are accuracy
gains. Results presented here suggest that the QR is quite accurate as is the SVD for most
problems. However, with a stiff OLS problem, such as the Filippelli data set, even with
quality software, such as LINPACK and LAPACK, it can make a difference what SVD
routine is being used. For less difficult data sets, such as Pontius, Eberhardt and a VAR
model on the gas furnace data, the selection of estimation method is less critical, provided
that rank tests are made so that multicollinearity can be detected. McCullough and Vinod
[15] and Stokes [33] suggest that more than one software system be used for nonlinear
estimation. Results presented in this paper suggest that if the condition of 'X X will not
allow estimation with the space-saving Cholesky approach, the QR or SVD approach
should be used. In cases where the SVD method is selected, it is important to try different
software systems. While moving the data to a higher precision before making the OLS
calculation may give the illusion of assisting in the solution, it will most likely mask the
effect of truncation of the data that occurred when it was initially read at the lower
precision. A better choice would be to read directly into the higher precision.32

31 By having the accuracy improvements able to be switched on and off, it is possible to replicate stock
LINPACK and LAPACK results.
32 If the data was coming from SAS or another system that only supports real*8, the user is trapped if a
move to real*16 is required.

 28

Acknowledgements

 A number of suggestions received from B. D. McCullough are most appreciated
and have helped strengthen the paper. Charles Renfro initially suggested the topic and
made a large number of suggestions for important improvements that have been
implemented. Some of the ideas of this paper were presented at the American Economic
Association Meetings 9 January 2005 in Philadelphia as part of comments on William
Greene's work in this area. Diana A. Stokes provided editorial assistance. Any remaining
errors are the responsibility of the author.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorenson. LAPACK User's Guide.
Siam, Philadelphia, 1992.

[2] A. J. Barr, J. H. Goodnight, J. P. Sall and J. T. Helwig , A User’s Guide to SAS 76,
SAS Institute, Raleigh NC, 1976.

[3] Box, G. E. P., and G. Jenkins. Time Series Analysis, Forecasting and Control. rev.
ed. San Francisco: Holden Day, 1976.

[4] T. Doan, RATS User's Manual, Evanston, Estima, 1992.

[5] J. Dongarra, C. B. Moler, J. R. Bunch and G. W. Stewart, LINPACK User's Guide.
Siam, Philadelphia, 1979.

[6] Doornik, Jurgen, R. J. O'Brien. "Numerically stable cointegration analysis,"
Computational Statistics and Data Analysis, 41 (2002) 185-193.

[7] W. Greene, William, Econometric Analysis, Prentice Hall, New York, 2000 4th
edition and 2005 5th edition.

[8] IEEE. Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985
NY Institute of Electrical and Electronics Engineers, 1985 reprinted in SIGPLAN Notices
22 (1987) 9-25.

[9] K. Judd, Numerical Methods in Economics, MIT Press, Cambridge, MA, 1998.

[10] Lawson, C., R. Hanson, D. Kincard and F. Frogh, "Basic Linear Algebra
Subprograms for Fortran Usage," ACM Transactuions Math Software, 5 (3) (1979). 308-
371.

 [11] J. Longley, "An Appraisal of Least Squares Programs for the Electronic Computer
From the Point of View of the User," Journal of the American Statistical Association 62,
no. 319 (1967), 819-841.

[12] MATLAB: The Language of Technical Computing, Mathworks, Natick, Mass 2000.

 29

[13] B. D. McCullough and C. G. Renfro, Some Numerical Aspects of Nonlinear
Estimation, Journal of Economic and Social Measurement 26, (2000), 63-77.

[14] B. D. McCullough and H. D. Vinod, "The Numerical Reliability of Econometric
Software." Journal of Economic Literature, 37 (June 1999), 633-665.

[15] B. D. McCullough and H. D. Vinod, "Verifying the Solution from a Nonlinear
Solver: A Case Study" American Economic Review 93(3) (June 2003), 873-892.

[16] B. D. McCullough, "Econometric Software Reliability: EViews, LIMDEP,
SHAZAM and TSP," Journal of Applied Econometrics,14 (1999), 191-202.

[17] B. D. McCullough, "Assessing the Reliability of Statistical Software: Part II," The
American Statistician, 53, no. 2 (May 1999), 149-159.

[18] B. D. McCullough, "Experience with the StRD: Application and Interpretation,
Computing Science and Statistics 31 (2000), 16-21.

[19] Cleve, Moler, Numerical Computing with Matlab, Siam, Philadelphia, 2004.

[20] Visual Numerics, IMSL Stat/Library and Math/ Library, IMSL, Houston, Texas,
1987.

[21] Press, William H., Brian Flannery, Saul Teukolsky, William Vetterling, Numerical
Recipes: The Art of Scientific Computing (Fortran Edition), Cambridge University Press,
Cambridge, New York, 1989.

[22] R. E. Quandt, "Computational Problems and Methods", Handbook of Econometrics,
Z. Griliches and M. D. Intrilligator, eds, North Holland, Amsterdam, 1983 pp. 699-764.

[23] C. Renfro, "Econometric Software: The First Fifty Years as Perspective," Journal of
Economic and Social Measurement 29 (1-3) (2004), 9-208.

[24] C. Renfro, "Normative considerations in the development of a software package for
econometric estimation," Journal of Economic and Social Measurement 23 (1997), 277-
330.

[25] C. Renfro, "Economic Data Base Systems: Further Reflections on the State of the
Art," Journal of Economic and Social Measurement 23 (1997), 43-85.

[26] C. Renfro, "Economic Data Base Systems: Some Reflections on the State of the
Art," Review of Public Data Use 8 (1980), 121-139.

[27] J. Rogers, J. Filliben, L. Gill, W. Guthrie, E. Lagergren and M. Vangel "StRD:
Statistical Reference Data Sets for Assessing the Numerical Accuracy of Statistical
Software," NIST TN#1396, National Institute of Standards and Technology (1998).

[28] Simon and Lesage, "Assessing the Accuracy of ANOVA Calculations in Statistical
Software," Computational Statistics and Data Analysis 8 (1989) pp 325-332.

 30

 31

[29] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, C. B.
Moler, Matrix Eigensystem Routines - EISPACK Guide, 2nd ed., Springer-Verlag, Berlin,
1976.

[30] D. M. Smith, Algorithm 693, ACM Transactions on Mathematical Software,
Vol. 17, no. 2, June 1991, pages 273-283.

[31] H. H. Stokes, "The Evolution of Economic Software Design: A Developer's View,"
Journal of Economic and Social Measurement 29(1-3) (2004), 205-260.

[32] H. H. Stokes, Specifying and Diagnostically Testing Econometric Models, 2nd ed.,
Quorum Press, Westport, Conn, 1997.

[33] H. H. Stokes, “On the Advantage of Using Two or More Econometric Software
Systems to Solve the Same Problem,” Journal of Economic and Social Measurement
29(1-3) (2004), 307-320.

[34] G. Strang, Linear Algebra and Its Applications, Academic Press, New York, 1976.

	[12] MATLAB: The Language of Technical Computing, Mathworks, Natick, Mass 2000.

