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This paper is concerned with a detailed study of the accuracy tradeoffs of 
differences in data precision and alternative approaches to the estimation of OLS 
models. The implications of the analysis of a variety of problems, most of which 
have known answers, extend far beyond OLS modeling and directly impact any 
empirical analysis when the matrices are at all ill conditioned or "stiff." While the 
focus here is on linear modeling, the findings are equally, if not more, important 
to nonlinear modeling.  Independent of the effect of the algorithm used, the 
precision in which the data was initially read was found to have a major impact on 
accuracy, even when the data was subsequently moved to a higher precision. This 
finding, illustrated best with the extremely multicollinear Filippelli data set, 
suggests that if a data base standard is agreed upon, the precision of the data saved 
will be of critical importance.  By the use of variable precision arithmetic 
software, an extended benchmark was developed for the Filippelli data and the 
results compared to the real*8 and  real*16 QR results.  Much of the software 
developed for this paper has been put in the public domain to be used by other 
researchers. 
 

1. Introduction  
 
1.1 Introductory remarks 
 

In the last 40 years changes in operating systems, computer hardware, compiler 
technology and the needs of research in applied econometrics have all influenced 
econometric software development and the environment of statistical computing. 
However, despite a number of articles by McCullough & Vinod [14, 15] and Renfro [22, 
23] and others, many economists are not aware of the impact on the accuracy of the 
calculation of using the alternate solution methods and data precisions that have been 
implemented in various statistical packages. Furthermore, less thought has usually been 
given to the impact on the accuracy of the final calculation that can be traced to the initial 
precision of the data saved in memory before it was moved to a higher precision for the 
calculation.1 Where the moment matrix does not have a high degree of multicollinearity, 
                                                 
1 For example many software systems allow real*4 data storage but move the data to real*8 to make a 
calculation. In many cases the resulting accuracy is not the same as what would be obtained with a direct 
read into real*8. A simple example involving 2.00 / 4.11 will illustrate the problems of precision. 
  
str=>vpa   .4866180048661800486618004866180048661800486618004866M+0 
r*8=>vpa   .48661800486618001080454992664677M+0 
r*8=>r*16  .48661800486618001080454992664677E+00 
str=>r*16  .48661800486618004866180048661800E+00 
r*8=>r*8   .48661800486618000000000000000000E+00 
r*4=>r*4   .48661798200000000000000000000000E+00 
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the selection of the appropriate method of analysis may be less critical, provided double 
precision calculations are made and the underlying linear algebra software used is of high 
quality. However, due to the popularity of polynomial regression models and the present 
widespread use of long lag VAR and error correction models, rank problems often occur 
as the moment matrix becomes increasingly "stiff." While the focus of this paper is on the 
estimation of OLS models, many of the findings on how to increase accuracy can be used 
in nonlinear modeling where rank issues can potentially be more serious. Using four data 
sets of varying difficulty, three of which have "certified" answers from StRD [27], the 
effect of the estimation method on the number of correct digits is studied. In addition, 
various means by which accuracy of a given method can be increased are discussed and 
illustrated. A number of the alternatives considered involve modifications to BLAS [10] 
software that should be used throughout a modern software system. The consequence of 
these improvements will be reflected in improved accuracy of many other calculations 
throughout the software system. The routines developed in this paper have been released 
for general use and are described in some detail. Finally, the relationship between  
real*16 (64 bit) estimation and the precision of the underlying data storage is illustrated.  

 
While data read into double precision (real*8) can be converted to real*16 to 

obtain greater accuracy, the results reported in the paper document the gain in accuracy if 
the data is directly read into real*16.2 This finding, illustrated best with the extremely 
multicollinear Filippelli polynomial regression data set, suggests that if a data base 
standard is agreed upon, the precision of the data saved will be of critical importance.3  
By the use of variable precision arithmetic software, an extended benchmark was 
developed for the Filippelli data and the results were compared to the real*16 results to 
fully benchmark the gains of real*16 calculation.  Testing of real*16 implementations is 
of increased importance due to the coming availability of 64 bit machines, which lower 
the cost of real*16 / complex*32 calculation. While most modern Fortran compilers have 
supported real*16 and complex*32 data types, using software emulation, the availability 
of hardware implementations of these data types will make their growing availability in 
software systems in the future more likely. Since a number of software systems still save 
data and make calculations in real*4, the Pontius data set, which is of intermediate 

                                                                                                                                                 
The line str>vpa lists the exact answer obtained  when the data  (2.0 and 4.11) are read from a string into a 
variable precision arithmetic (VPA)  routine while  the line r*8=>vpa shows what happens to accuracy 
when the data are first read into real*8 or double precision, then moved to a vpa datatype. The line 
r*8=>r*16 shows what occurs when the data are first read into real*8, then converted to real*16 before 
making the calculation. In this case the results are the same as what is obtained with r*8=>vpa but are 
inferior to the line str=>r*16 where the data are read directly into real*16. The lines r*8=>r*8 and 
r*4=>r*4 show what can be expected using the usual double precision and single precision math, 
respectively.  The importance of this simple example is it shows the effect of data storage precision and 
data calculation precision in a very simple problem where each can be isolated. When there are many 
calculations needed to solve a problem (to invert a 100 by 100 matrix by elimination involves a third of a 
million operations), round off error can mount, especially when numbers differ in size. Strang [34, page 32] 
notes "if floating-point numbers are added, and their exponents c differ say by two, then  the last two digits 
in the smaller number will be more or less lost..."  
 
2 Real*4 or single precision on IEEE machines has a range of 1.18*10-38 to 3.40*1038. This gives a 
precision of 7-8 digits at best. Real*8 or double precision has a range of 2.23*10-308 to 1.79*10308 and at 
best gives a precision of 15-16 digits. Real*16 has a range of 10-4931 to 104932 and gives up to 32 digits of 
precision. VPA or variable precision arithmetic allows variable precision calculations.   
3 The question is whether the data base produces a real*4 data value, a real*8 data value, or a character 
representation of the exact digits of the basic data, which could then be read into the investigators precision 
of choice. 
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difficulty, is estimated using a variety of methods for real*8 data and real*4 data. The 
interesting result is while methods of analysis that involved formation of ( ' )X X  failed 
the condition check for both real*8 and real*4 data, if these checks were ignored, the 
results were surprisingly good. The QR method, however, gave superior performance in 
terms of accuracy.  We next turn to some of the statistical issues before moving to a 
discussion of the examples. 
 
1.2 Statistical background 
 
 Assuming X is a matrix of N observations on K right-hand side variables and  
is a N element vector of values of the left-hand side variable, econometric textbooks tell 
us that the estimated solution vector to the ordinary least squares problem  is 

y

1ˆ ( ' ) 'X X Xβ −=

ˆ
y

( '
  with coefficient standard errors as the square root of the diagonal 

elements of 2 1)X Xσ −  where .   Usually, there is little 
emphasis on how best to solve (

2 2ˆ( ) /(y X N Kσ β= − −
1' )

)
X X − , or whether in fact to calculate it at all.  The 

condition of a matrix X, C(X), defined as the ratio of the largest to the smallest singular 
value (to be defined below), can be used to help in this decision. Values of C(X ) obtained 
near 1 indicate the inverse of 'X X

ˆ

can be accurately formed and the matrix is deemed to 
be well conditioned. However, if C(X) increases, there are increased difficulties in 
obtaining the inverse accurately. It can be proved that C X . Since the 
formation of X'X  squares the condition, in cases where there is multicollinearity and the 
condition was already large, methods of solving for 

2( ' ) [ ( )]X C X=

β  that do not require the formation 
of 'X X  such as the QR (defined later) and the SVD (defined later) may very well be the 
method of choice. The goal of this paper is to illustrate the gains of such methods as well 
as to discuss various ways to increase accuracy. Then impact of data precision will also 
be discussed.  
 

If the inverse is desired, many practicing economists give little thought of the 
choice of an inversion approach. Assuming a full rank system, since 'X X is positive 
definite, the Cholesky factorization has been found to be substantially faster by a factor 
of at least 2 over a general matrix solution technique such as the LU factorization, 
although this is usually not discussed.4  In discussing alternatives to the usual formula, 
Greene ([7] page 175)5  notes, "the loss of accuracy in least squares computations occurs 
not in inverting 'X X  but in accumulating it." Greene goes on to note "the singular value 
decomposition and QR decomposition… are generally the preferred approach to the 
computation of least squares."6  A major focus of the present paper is to study empirically  
                                                 
4 An exception is Judd [9 page 60] who notes, "The advantages of the Cholesky decomposition is that it 
involves only  multiplications and n square roots, which is about half the cost of Gaussian 
elimination for large n. It is also more stable than LU decomposition, particularly since there is no need for 
pivots."  Once the Cholesky R is found, it is possible to directly solve the system of equations without 
explicitly obtaining 

3 / 6n

1( ' )X X − .  In a related paper on cointegration methods, Doornik and O'Brien [6] 
recommend a number of numerically stable methods that include the QR and  the SVD, with the former 
being fastest and the latter being more suitable in reduced rank situations. 
5 In 2000 this was in the chapter on computation (3). In the 5th edition in 2005, much of this material was 
moved to page 833 of Appendix A. 
6 Press [21], page 513-518 cautions the reader to use the QR method or the SVD method, except when the 
problem is easy. Press comments on the speed loss of the SVD but notes, "Its great advantage, that it 
(theoretically) cannot fail, more than makes up for its speed disadvantage." Results reported later suggest 
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both "accumulation/precision issues" and "method of calculation issues," with the 
objective of showing what can be expected in terms of accuracy using various approaches 
on a variety of linear test problems. The examples have been selected to stress the 
software. All but one has been taken from the StRD data sets, which have been designed 
to exhibit data stiffness.7  While the issue of accuracy was first brought to the attention of 
the profession by the work of Longley [11], in recent years a number of important papers 
by McCullough and Vinod [14,15], McCullough and Renfro [13], McCullough [16, 17, 
18] and Renfro [23, 24] have demonstrated that this is a subject that continues to be 
relevant today. This paper is a contribution to this ongoing discussion.  
 
1.3 Overview of the paper 
 

After first briefly discussing the alternative approaches to estimation,  such as LU, 
Cholesky, QR and SVD, and why they might be used, this paper will outline a number of 
modifications to the BLAS library of utility programs that will increase real*8, real*16  
and real*4 accuracy of the various approaches.8  Issues of data storage, whether to save 
data in real*8, real*4 or real*16, which have had little discussion in the literature, will be 
explored, using known examples.9  Finally, variable precision arithmetic is used to extend 
a famous benchmark to validate the accuracy of the reported real*16 calculations.       
 

                                                                                                                                                 
that not all SVD routines are created equal and use of the SVD can result in substantial accuracy loss in 
some cases. 
7 StRD [27] documentation refers to the work of Simon and Lesage [28], who note that as the number of 
constant leading digits increases, it becomes increasingly more difficult to make accurate computations.  
8 The changes to BLAS [10], LINPACK [5] and EISPACK [29] discussed in this paper and implemented in 
B34S (Stokes [31, 32]) are being made available for other researchers to be freely used in any software 
systems, provided that attribution is given. The FTP library for this material is available under the research 
page of www.uic.edu/~hhstokes. The file sourc3.f contains changes and additions made to LINPACK, 
BLAS and EISPACK. Other public domain code, such as FFTPACK, which was not modified, is also 
present in this file. Fortran code in this library can be freely placed in any software code, provided that 
attribution is made to the source. The nature of these changes will be discussed later in this paper. The file 
sourc2.f contains the LAPACK [1] library used and is basically unchanged over what is available from 
netlib. Comments on the routines in sourc3.f are welcome and should be addressed to hhstokes@uic.edu. In 
addition to these libraries, all jobs (that include data sets) and output that are used in this paper are shown. 
9 Modern software systems, such as SAS [2] and RATS [4], save data in real*8 or double precision and 
thus make the decision on data storage for the user. Up until recently this was the case for Matlab [12]. 
However, with the recent release (version 7.0 R14) this is no longer true. While the default data storage 
precision is real*8, real*4 is also supported. The decision on precision for data storage becomes more 
critical, since uninformed  users can make a wrong choice.  Results in this paper to be shown latter suggest 
that substantial gains in accuracy can be made if data is saved internally in real*16, not the default real*8.  
This finding suggests that real*4 storage of data may be more dangerous than previously thought. Renfro 
[26] in 1980 and more recently in a major paper in 1997 [25] has discussed data base system standards. In 
Figure (1) of Renfro [25], there is a precision capability where in single precision 6-7 digits are saved while 
in double precision 12-14 digits are saved. The results reported later in this paper suggest the former 
standard may be less than optimum, especially for data in log form.    
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2. Brief notes on various approaches to making and improving an OLS Model 
 
2.1 Problems in solving an OLS model using the usual formulas 
 
 Since ( ' )X X  is a positive definite matrix , if the system is full rank, rather than 
using a LU factorization to calculate the inverse, one way to proceed is to perform 
Cholesky decomposition and express ( ' ) 'X X R R=  where 'R  is lower triangular. Rather 
than forming ( ' )X X  and losing accuracy in the process, the QR approach expresses 

'
0
R

Q X  
=  
 

 where Q is N by N and orthogonal ( ' )IQ Q = . The QR approach to obtaining 

R is substantially more accurate, particularly in a number of difficult problems shown 
later. Once the QR factorization is performed, 1 'ˆ R Q y−β = . If 1( ' )X X −  is needed to 
obtain the SE, the more accurate R obtained from the QR factorization of X  can be used 
in place of the R obtained from a Cholesky factorization of 'X X  to obtain 1( ' )X X − . 
The SVD approach factors 'X U= Θ

1 1) 'V U− −= Θ

V

1 'y V U y−= Θ

 where U is N by K, V is K by K and U and V are 
orthogonal. Θ  is a diagonal matrix with the singular values along the diagonal.10 It is 
easy to show that . Since calculation of (β̂ ( ' 1)'X X −  is needed 
to obtain the SE of a OLS model, this can be obtained very quickly  since it can be shown 
that ( ' 1 2 ')X X V− = Θ V−  since 2) '( 'X X V V= Θ  and V 1' V −≡ . A problem arises in cases 
when the diagonal elements of  get very small due to multicollinearity and thus become 
very large when forming , causing numerical problems. 

Θ
2−Θ

 
2.2 Simple modifications to BLAS to improve accuracy 
 
 

                                                

In an important and widely cited paper, McCullough and Vinod [14] argued that 
the standard formula would not calculate the variance accurately in a number of test 
cases,11 while their "corrected" formula would. While this was a useful and important 
exercise to raise the consciousness of software developers on the need for numerical 
accuracy, the fact that the variance formula in many software systems was subsequently 
improved, and the software subsequently passed the benchmark test, gave no assurance 
that the rest of the program was sufficiently accurate. Furthermore, there was no really 
good way to test the sensitivity of results to accuracy without extensive and often 
impractical code modifications. The BLAS routines, released in 1979 by Lawson and 
others [10],  provided a fast and modular way to perform basic calculations. The BLAS 
was extensively used in LINPACK [5] and subsequently extended to BLAS levels 2 and 
3 and used in LAPACK [1]. If these routines are used throughout a software system, then 

 
10 The singular values s(i) of X  are the square root of the eigenvalues of 'X X '. Thus[ (  is the 
condition of the matrix 

21) / ( )]s s k
'X X

1)

, since the singular values are ordered from large to small. The singular 
values of X'X are in fact the eigenvalues sorted from largest to smallest.  If the condition of X'X  is 10d  then 
the elements of ( 'X X

'

−  "can usually be expected to have fewer significant figures of accuracy that the 
elements of " X X  LINPACK [5, page 1.1]. 
11 While the text book formula for the variance is 2( ) /(x x n 1)− −∑ , a formula less likely to have 

rounding error is 2 2
1 1

1 1{ ( ) [ ( )]
( 1

n n
i ii i

x x x x
n n= =

− − −
− ∑ ∑ }. 
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changes in accuracy of basic calculations, such as dot product (
1

n

i i
i

a x
=

= y∑ ), 

summation  and elementary vector operations (
1

n

i
i

a
=

= ∑ x y ax y= + ),  can be changed in 

one place and their effect on the resulting accuracy of calculations measured in many 
other places. The B34S (Stokes [31, 32]) made these changes and the code for these 
improvements has been released as part of this article.12 A partial list of the key real*8  
BLAS routines is given in Table 1. Real*4 routines are not listed to save space. 

                                                 
12 The changes to BLAS for inner products were to DDOT/ZDOTU/ZDOTC/QDOT/CQDOTU and 
CQDOTC.  For summation DSUM/ZSUM/QSUM/CQSUM were changed. The absolute sum routines 
DASUM/QASUM were also changed as were the scale routines DSCAL/ZSCAL/QSCAL/CQSCAL and 
the transformation routines DAXPY/ZAXPY/QAXPY/CQAXPY. It is to be noted that the Qxxxx  and 
CQxxxx routines were developed for B34S and are used to increase accuracy of real*16 and complex*32 
data types. These are not the BLAS names.  
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Table 1 

Partial List of Improvements to BLAS 
______________________________________________________________________ 
subroutine real16add(i)                     Controls math accuracy 
 
Scale a vector 
subroutine   dscal(n,da,dx,incx)            Linpack 
subroutine dqdscal(n,da,dx,incx)            Math done in real*16 
subroutine  cqscal(n,za,zx,incx)            complex*32 za complex*32 
subroutine cqqscal(n,da,zx,incx)            complex*32 da real*16 
subroutine   qscal(n,da,dx,incx)            real*16 
subroutine   zscal(n,za,zx,incx)            Linpack 
subroutine  zdscal(n,da,zx,incx)            Linpack 
 
Swap vectors for various precisions 
subroutine  dswap(n,dx,incx,dy,incy)        Linpack 
subroutine  zswap(n,zx,incx,zy,incy)        complex*16 
subroutine  qswap(n,dx,incx,dy,incy)        real*16 
subroutine cqswap(n,dx,incx,dy,incy)        complex*32 
 
Dot product 
integer function   idot(n,dx,incx,dy,incy) 
real*8 function    ddot(n,dx,incx,dy,incy)  Linpack 
real*8 function ddot_16(n,dx,incx,dy,incy)  High accuracy using IMSL 
real*8 function  ddot_2(n,dx,incx,dy,incy)  ACC2 
real*16 function qdot(n,dx,incx,dy,incy)    Real*16 
 
Accuracy improvements to real*8 calculations 
real*16 function qdble(x)                   real*8 to real*16 
real*16 function qqdmult(a,b)               real*16 mult of real*8 
real*8 function  dqdmult(a,b)               real*16 mult of real*8 
real*16 function  qqdadd(a,b)               real*16 add  of real*8 
real*8 function   dqdadd(a,b)               real*16 add  of real*8 
real*16 function  qqdsub(a,b)               real*16 sub  of real*8 
real*8 function   dqdsub(a,b)               real*16 sub  of real*8 
real*16 function  qqddiv(a,b)               real*16 div  of real*8 
real*8 function   dqddiv(a,b)               real*16 div  of real*8 
real*16 function  qqdpow(a,b)               real*16 **   of real*8 
real*8 function   dqdpow(a,b)               real*16 **   of real*8 
 
Sum absolute values 
real*8 function     dasum(n,dx,incx)        Linpack 
real*8 function   dqdasum(n,dx,incx)        real16add path 
real*8 function   dasum_2(n,dx,incx)        acc2 path 
real*8 function    dzasum(n,zx,incx)        Linpack 
real*16 function  qcqasum(n,zx,incx)        complex*32 version 
real*16 function    qasum(n,dx,incx)        real*16 version 
 
Sum of a vector 
real*8  function        dsum(n,dx,incx)     Linpack 
real*8  function      dqdsum(n,dx,incx)     real16add path 
real*8  function      dsum_2(n,dx,incx)     acc2 
real*16 function        qsum(n,dx,incx)     real*16 version 
real*16 function      qsum_2(n,dx,incx)     high accuracy real*16 
complex*32 function    cqsum(n,dx,incx)     complex*32 version 
integer function        isum(n,dx,incx)     integer*4 
double complex function zsum(n,dx,incx)     complex*16 
 
Constant times a vector plus a vector 
subroutine   daxpy(n,da,dx,incx,dy,incy)    Linpack 
subroutine dqdaxpy(n,da,dx,incx,dy,incy)    Real16add path 
subroutine   qaxpy(n,da,dx,incx,dy,incy)    Real*16 version 
subroutine  cqaxpy(n,za,zx,incx,zy,incy)    Complex*32 version  
___________________________________________________________________ 
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 As an example of what is involved in enhancing a BLAS routine, consider DDOT, 
which was modified as 
 
      real*8 function ddot(n,dx,incx,dy,incy) 
c 
c     forms the dot product of two vectors. 
c     This version has been simplified to not use unrolled loops. 
c     It is intended to show the simple changes needed to implement 
c     different accuracy paths. The unrolled loop version should be 
c     used in production code. 
c 
c     Note:  => dqddot is an IMSL routine! 
c            => ddot_16 uses HHS real*16 mult 
c 
      implicit real*8(a-h,o-z) 
      double precision dx(*),dy(*),dtemp,ddot_16,dqddot 
      integer i,incx,incy,ix,iy,m,mp1,n 
      logical ison 
      common/real16/ison(3) 
      save /real16/ 
c 
      dtemp = 0.0d0 
      ddot  = 0.0d0 
      if(n.le.0)return 
c 
      if(ison(1))then 
      if(ison(2))     ddot=dqddot(n,dtemp,dx,incx,dy,incy) 
      if(.not.ison(2))ddot=ddot_16(n,dx,incx,dy,incy) 
      return 
      endif 
c 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
c 
      do i = 1,n 
      dtemp = dtemp + (dx(ix)*dy(iy)) 
      ix = ix + incx 
      iy = iy + incy 
      enddo 
c 
      ddot = dtemp 
      return 
      end 
 
 
to allow a branch to dqddot if ison(1) and ison(2) were .true. and ddot_16 
if ison(1) was .true. and ison(2) was .false. . The routine ddot_16 does 
real*16 math internally and has the same accuracy as dqddot. A version without 
unrolled loops is 
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      real*8 function ddot_16(n,dx,incx,dy,incy) 
      implicit real*8(a-h,o-z) 
c 
c     forms the dot product of two real*8 vectors. 
c     uses real*16 math 
c 
      real*8 dx(*),dy(*),dbleq 
      real*16 qqdmult,dtemp 
      integer i,incx,incy,ix,iy,m,mp1,n 
c 
      dtemp    = 0.0q0 
      ddot_16  = 0.0d0 
      if(n.le.0)return 
c 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
c 
      do i = 1,n 
      dtemp = dtemp + qqdmult(dx(ix),dy(iy)) 
      ix = ix + incx 
      iy = iy + incy 
      enddo 
c 
      ddot_16 = dbleq(dtemp) 
      return 
      end 
 
where  qqdmult multiplies two real*8 numbers in real*16 and saves the result in 
real*16. 
 
      real*16 function qqdmult(a,b) 
      implicit real*16(a-h,o-z) 
c 
c     multiplies two real*8 numbers in real*16 
c     saves in real*16 
c     built 26 May 2003 by Houston H. Stokes 
c 
      real*8 a,b 
      external qdble 
c 
      qqdmult=qdble(a)*qdble(b) 
      return 
      end 
 
As will be shown later ddot_16 allows the inner product summation and multiplication 
to be done in real*16 and returns the answer in real*8, which improves accuracy every 
place that DDOT is called. The routine dqddot is an IMSL [20] routine that does the 
same thing as ddot_16 except faster since it uses the IMSL routines DQINI, DQADD, 
DQMUL and DQSTO, which operate using real*8 math but give real*16 accuracy. When 
64 bit hardware and compilers are available, the reverse will most likely be true. The 
multiplication calculation in ddot_16 could be replaced with inline code if 
qqdmult(dx(ix),dy(iy)) was replaced by 
qdble(dx(ix))*qdble(dy(iy)). The reason this was not done was to 
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experiment with and isolate real*8 to real*16 conversion in one routine, qdble which 
is listed next: 
 
      real*16 function qdble(x) 
c 
c     function to convert real*8 to real*16 
c 
      real*8 x 
      real*16 y 
      call r8tor16(x,y) 
      qdble=y 
      return 
      end 
      subroutine r8tor16(x,y) 
      real*8  x 
      real*16 y 
c 
c     real*8 to real*16 conversion since no fortran 
c     function.  
c 
      y=x 
c 
      return 
      end 
 
  
 

Real*16 math accuracy can be enhanced  by use of routines QVXADD, QVXMUL 
and QVXSTO, which were developed based on logic from no longer supported IMSL 
code from the 1980's.  The routine LGCOPY is similar to the BLAS routine DCOPY, 
except that logical*1 data is copied to zero out portions of the real*16 number to perform 
the split.  
 
      subroutine qvxadd(a,acc) 
c 
c   purpose             - extended precision add - better than real*16 
c 
c   usage               - call qvxadd (a,acc) 
c 
c   arguments    a      - real*16 number to be added to the 
c                         accumulator. (input) 
c                acc    - accumulator. (input and output) 
c                           acc is a real*16 vector of length 
c                           2. on output, acc contains the sum of 
c                           input acc and a. 
c 
      real*16   a,acc(2),x,y,z,zz 
c 
      x = acc(1) 
      y = a 
      if (qabs(acc(1)).ge.qabs(a)) go to 1 
      x = a 
      y = acc(1) 
c                        compute z+zz = acc(1)+a exactly 
    1 z = x+y 
      zz = (x-z)+y 
c                        compute zz+acc(2) using real*16 math 
      zz = zz+acc(2) 
c                        compute acc(1)+acc(2) = z+zz exactly 
      acc(1) = z+zz 
      acc(2) = (z-acc(1))+zz 
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      return 
      end 
      subroutine qvxmul(a,b,acc) 
c 
c     purpose             - real*16 extended precision (better than 
c                           real*16 multiply) 
c 
c     usage               - call qvxmul (a,b,acc) 
c 
c     arguments    a      - input real*16 number 
c                  b      - input real*16 number 
c                  acc    - accumulator. (input and output) 
c                           acc is a real*16 vector of length 
c                           2.  on output, acc contains the sum of 
c                           input acc and a*b. 
c 
c     logic changed 1 October 2004 by Houston H. Stokes for real*16 
c 
      real*16       a,b,acc(2),x,ha,ta,hb,tb 
      logical       lx(16) 
      equivalence   (x,lx(1)) 
c 
c     logic split a = ha+ta 
c                 b = hb+tb 
c                 compute ha*hb,ha*tb,ta*hb, and ta*tb 
c                 and call qvxadd to accumulate the sum 
c 
      x=a 
      ha=0.0q+00 
      call lgcopy(8,.true.,0,lx,1) 
      ha=x 
      ta=a-ha 
      x=b 
      hb=0.0q+00 
      call lgcopy(8,.true.,0,lx,1) 
      hb=x 
      tb=b-hb 
c 
      x = ta*tb 
      call qvxadd(x,acc) 
      x = ha*tb 
      call qvxadd(x,acc) 
      x = ta*hb 
      call qvxadd(x,acc) 
      x = ha*hb 
      call qvxadd(x,acc) 
      return 
      end 
      subroutine qvxsto(acc,d) 
c 
c     routine built by Houston H. Stokes 
c     purpose             - real*16 store. (Better than real*16) 
c 
c     usage               - call qvxsto(acc,d) 
c 
c     arguments    acc    - accumulator. (input) 
c                           acc is a real*16 vector of length 
c                           2. acc is assumed to be the result of 
c                           calling qvxadd or qvxmul to perform extended 
c                           precision operations. 
c                    d    - real*16 scalar. (output) 
c                           on output, d contains a double precision 
c                           approximation to the value of the extended 
c                           precision accumulator. 
c 
      real*16 acc(2),d 
c     first executable statement 
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      d = acc(1)+acc(2) 
      return 
      end   
 
   
 While enhancements to BLAS routines to provide additional accuracy are a 
relatively easy way to increase the accuracy of currently running code developed using 
real*8 and complex*16, the development of real*16 and complex*32 versions of key 
routines in EISPACK [29] and LINPACK [5] will be shown to provide further, and in 
many cases needed, accuracy for difficult problems. 
 
2.3 Effect of data storage in memory and data reading 
 
 While most modern software systems save data in real*8, there are exceptions 
that save data in real*4 by default.13 A related problem is data base systems that save 
transformed data in real*4 and thus negatively impact being able to perform accurate 
calculation of some statistical procedures.14 With 64 bit hardware computing on the 
horizon and 64 bit software-based computing possible, it is important to see the effect of 
data storage on accuracy.15 While the usual approach is just to boost accuracy for a 
calculation, evidence shown later in this paper suggests that much is lost by this 
approach.  For difficult problems, more accuracy can be obtained if data are read directly 
into a real*16 variable. This will be shown later using the StRD [27] Filippelli data set. 
While the Filippelli OLS data set, if read into a real*8 variable, will not solve with a 
Cholesky factorization, if the data are loaded into a real*16 variable, more accuracy than 
the QR on real*8 data is obtained with a Cholesky factorization.16 However, if the same 
data were directly loaded in real*16, then many more accurate digits are obtained. This 
finding, which will be discussed in some detail later, suggests a number of important 
things. First, a data copy into real*16 from real*8 can help but is no substitute for a direct 
read into real*16. While it could be said that the Filippelli data set is known to cause 
problems and that the findings are not relevant for most problems, it remains interesting 
to see what happens when one can see a difference. 
 
2.4 Accuracy issues involving the variance 
 
 

                                                

To test if the McCullough-Vinod [14] formula was actually needed to calculate 
the variance, the StRD Numerical-Accuracy-4 data set, which provides the "stiffest" 

 
13 McCullough [17 page 152] discussed problems of real*4 data storage. He notes, "… users should also be 
aware that single-precision storage can have an adverse effect on accuracy, even when the input data are 
single-precision." SCA is an example of a software system that saves data in real*4 by default, although 
real*8 storage is also possible. The effect of real*4 data storage on accuracy is studied later with the 
Pontius data set. 
14 Since the B34S allows data to be transformed to real*4 and then recopied back to real*8, it is possible to 
simulate the effect of real*4 databanks.  
15 Fortran 77 has had the data types REAL*16 and COMPLEX*32 for many years. The implementation of 
arithmetic using these data precisions was software-based and slow. With 64 bit machines available, these 
calculations will substantially speed up in the future as hardware solutions will be implemented. 
16 The QR using real*16 data is still more accurate, although for data converted from real*8 to real*16, 
both the Cholesky and the QR will have the same degree of accuracy. The Filippelli problem, when 
estimated with RATS [4] version 6.03, gives no indication that there is a problem except producing some 
0.0 coefficients. If the same problem is run with the SAS ORTHOREG procedure, no correct coefficients 
are produced and 9β  is set to missing. Table 10, discussed in section 4, documents a real*16 Filippelli 
benchmark developed with variable precision arithmetic. 
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variance calculation, was selected. Here the sample mean, standard deviation and 
autocorrelation are known exactly and are 10000000.2, .1 and -.999, respectively. To 
measure the number of significant digits in the answer, McCullough [16] suggests using 
the log relative error, defined as  10log (| | / | |LRE x c c= − −  for c 0≠  and 10log (| |)x−  
otherwise, where x = the answer obtained and c = the "correct" or target answer. Using 
the standard B34S17  matrix command formulas for the mean, standard deviation and auto 
correlation, the answers obtained for the above problem were, respectively, 
10000000.20000000, 0.1000000005587935  and   -0.9989999999813732. These give 
LRE  values of 15.0, 8.25 and 10.73 respectively.18 The test data set consists of 1001 
observations of three data values (10000000.2,  10000000.1,  10000000.3). A number of 
tests were run, using first the default B34S variance routine that consists of both the 
McCullough-Vinod formula and high accuracy summation and product enhancements 
and, second, the traditional formula (programmed with the B34S matrix command 
language), with and without accuracy enhancements. Both approaches were run on real*8 
data, real*8 data copied to real*16 and data read directly into real*16. The results are 
listed in Table 2. 

                                                 
17 All calculations have been done using the B34S MATRIX command unless otherwise stated. 
18 The error of the autocorrelation was -0.1862676679564856E-10, which is clearly acceptable for most 
work. The same can be said for the standard deviation calculation. As will be shown later, the LRE value 
can be increased to 26.31 if data are read into real*16 and real*16 math is used. McCullough [18 page 17] 
obtained LRE values of 15, 8.3 and 15 for real*8 data. 
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Table 2. The Effect of Formulas and Data Precision on Standard Deviation Calculation 
_____________________________________________________________________ 
Experiment # 1 No Accuracy improvements for Case B. Real*8 Data 
Case A 0.1000000005587935                      LRE   8.25                               
Case B 0.1000000005588410                      LRE   8.25                              
 
Experiment # 2 Accuracy improvements for Case B. Real*8 Data 
Case B 0.1000000005587935                      LRE   8.25                               
 
Experiment # 3 Real*8 to Real*16 Data. No accuracy improvements  
Case A 0.10000000055879354477361958556452      LRE   8.25              
Case B 0.10000000055879354477361958556452      LRE   8.25              
 
Experiment # 4 Data read directly into Real*16 
Case A 0.10000000000000000000000000048468      LRE  26.31              
Case B 0.10000000000000000000000000048468      LRE  26.31  
 
Experiment # 5 Real 8 to Real*16 Data. Real32 accuracy on 
+++++++++++  converted real*16 ++++++++++++++++ 
Case A 0.10000000055879354477361958556452      LRE   8.25              
Case B 0.10000000055879354477361958556452      LRE   8.25 +++++++++++   
 
Experiment # 6 Data read directly into real*16. Real32 on.  
Case A 0.10000000000000000000000000048468      LRE  26.31             
Case B 0.10000000000000000000000000048468      LRE  26.31  
_____________________________________________________________________ 
Case A uses the high accuracy formula with high accuracy enhancements. 
Case B uses the standard formula as listed in footnote 9. 
LRE is the McCullough [16] accuracy measure. The exact answer is .1. 
 
In experiment # 1 for real*8 data the LRE was the same for both approaches (8.25) but 
the answers were slightly different. In experiment # 2 BLAS accuracy enhancements are 
turned on and  both approaches obtain the same answer. This suggests that the real*8 
accuracy enhancements obviate the need for the  "correct" variance formula discussed in 
footnote 11. 
 
Experiment # 3 copies the data to real*16 from real*8, makes all calculations in real*16 
and observes no accuracy gain. Experiment # 4, however, reads the data directly into 
real*16 before making calculations in real*16 and obtains a LRE of 26.31, a substantial 
gain. The importance of this is that the data storage precision makes a difference. If 
calculations are desired in real*16, for difficult problems it is imperative that accuracy 
not be lost in the initial data read, where truncation errors occur due to inexact binary 
representation, especially for "stiff" data. While it is known that this problem may occur, 
the above example illustrates the nature of the loss. Reading into real*16 directly makes a 
major difference. Experiments # 5 and # 6 test if accuracy enhancements to real*16 
calculations, using QVXADD, QVXMUL and QVXSTO, will make a difference. The 
finding is that for this problem it does not make a difference. Variable precision 
arithmetic calculation, not shown in the table, using 60 digits of accuracy produces the 
exact answer.  
 
2.5 Speed issues for the SVD 
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 Press et al  [21] advise use of the QR or SVD but remarks that there are speed 
disadvantages of the SVD. While results presented in the next section suggest that there 
can be some accuracy losses using the SVD, this section will address the speed issues of 
two SVD candidates using two types of CPU. In test # 1, reported on the top of Table 3, 
the results suggest that up to a matrix of order 400, LINPACK is faster, while for larger 
systems LAPACK runs more quickly. These tests were run on a Dell Latitude running a 
1.1 Gh processor and Windows 2000. Since most problems involving OLS are for 
matrices of order less than 350, the choice appeared to be to use LINPACK, based on 
speed of calculation for these matrices and LAPACK for systems bigger than order 350. 
However, when the above tests are run on a Dell 650 workstation running a 3.05 Xeon 
chip and Windows XP, there appears to be no speed gain if LAPACK is used for large 
systems. Due to the chip design, there were measured performance gains for both 
routines.19 For example, when we compare 600-order systems to 200-order systems on 
the Dell Latitude, the time increased  84.6 fold (27.96/.3305) for LINPACK and 52.3 
(20.43/.3906) for LAPACK. For tests using the Xeon  chip, these numbers were 38.1 
(4.766/.1250) and 37.7 (6.484/.1719), respectively. For LAPACK the optimum 
workspace was set by the routine on the first call. For all tests the singular values Θ , the 
first K rows of U and the full V was calculated.  The square matrices used were built 
using the IMSL [20] random normal generator.  In the next section the two SVD code 
choices are tested for accuracy differences.  
 
Table 3. Speed Differences of the SVD Calculation by CPU Type and Matrix Size 
_______________________________________________________________________ 
Test 1 Relative Speed of Linpack/LAPACK SVD on Dell Latitude 1.1 Gh 
 
Obs      ORDER       LINPACK     LAPACK      RATIO 
     1      150.0      0.1302      0.1302       1.000 
     2      200.0      0.3305      0.3906      0.8462 
     3      250.0      0.8112       1.001      0.8100 
     4      300.0       1.793       2.063      0.8689 
     5      350.0       3.405       3.555      0.9577 
     6      400.0       5.798       5.778       1.003 
     7      450.0       8.863       8.132       1.090 
     8      500.0       12.60       12.30       1.024 
     9      550.0       21.10       15.49       1.362 
    10      600.0       27.96       20.43       1.369 
 
Test 2 Relative Speed of Linpack/LAPACK SVD on DELL 650 3.05 Gh Xeon 
 
Obs      ORDER       LINPACK     LAPACK      RATIO 
     1      150.0      0.4688E-01  0.6250E-01  0.7500 
     2      200.0      0.1250      0.1719      0.7273 
     3      250.0      0.2344      0.3750      0.6250 
     4      300.0      0.5312      0.7344      0.7234 
     5      350.0      0.8906       1.203      0.7403 
     6      400.0       1.359       1.906      0.7131 
     7      450.0       1.969       2.594      0.7590 
     8      500.0       2.703       3.641      0.7425 
     9      550.0       3.656       4.781      0.7647 
    10      600.0       4.766       6.484      0.7349 

_____________________________________________________________________ 
The LINPACK SVD routine used was DSVDC, while for LAPACK DGESVD was used.  

                                                 
19 To test if this finding was due to Windows 2000 vs XP, the above exercise was run on a Dell Xeon 
workstation running Red Hat Linux and having 2.5 Gh chips. Results comparable to the Xeon results 
reported in Table 3 were obtained. This suggests it is multi-thread chip design that is causing the difference.  
All tests were run using Lahey version 7. Fortran compilers. The developers of LAPACK [1] have noticed 
similar CPU design-sensitive effects.  Their results, done in 1992, did not include modern Intel chips.  
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3. Results for OLS Models 
 
3.1 Filippelli polynomial data set 
 
 

x e

To measure the effects of data precision and calculation method on accuracy 
requires a number of different test data sets. The first problem attempted was the StRD 
[27] Filippelli data set, which contains 82 observations on a polynomial model of the 

form   where x ranges from -3.13200249 to -8.781464495 and 
10

0
1

i
i

i

y β β
=

= + +∑ 10x  

ranges from 90,828.258 to 2,726,901,792.451598.  Answers to 15 digits are supplied by 
StRD.20 Table 4 reports 15 experiments involving various ways to estimate the model. 
The LINPACK Cholesky routines and general matrix routines detect rank problems and 
will not solve the problem if the data are not converted to real*16. The QR approach 
obtains an average LRE of 7.306, 7.415 and 8.368 on the coefficients, SE and residual 
sum of squares. The exact numbers obtained are listed in Table 5. If the accuracy 
improvements for the BLAS routines suggested in section 2.2 are enabled, these LRE 
numbers jump to 8.118, 8.098 and 9.803, respectively. Note that both accuracy 
improvements result in the same gain.  Experiments # 4 and # 5 first copy the data that 
have been first read into real*8 into a real*16 variable and attempt estimation with a 
Cholesky and a QR approach. The LRE's are the same for both approaches (7.925, 8.708, 
8.167). This experiment shows the effect of calculation precision and at first would lead 
one to believe that there is little gain obtained using real*16 calculation except for the 
fact that the Cholesky condition is not seen as 0.0. However, this interpretation would be 
premature without checking for data base precision effects (i. e., at what precision was 
the data initially read), which we do below. 
 
 

                                                

Experiments 6-12 test various combinations of calculation precision and routine 
selection. In Experiment # 6 we use the LINPACLK SVD routines on real*8 data. The 
results are poor (LRE numbers of 2.195, 2.132 and 4.039).21 When the accuracy 
improvements are enabled, (experiment 7 and 8), there is a slight loss of accuracy on the 
coefficients to 1.901 but a slight gain on the SE to 2.431 . However, when the real*8 data 
are copied to real*16 in experiment 9, the SVD LRE numbers jump to 7.924, 8.708 and 
8.167, respectively, which are similar to what was found in experiments 4 and 5 and 
show clearly the effect of calculation precision conditional on data reading into real*8 
before the data are moved to real*16. These results are similar to those in the real*16 
Cholesky experiment 4 and the real*16 QR experiment 5. 
 

 
20 StRD documentation reports that while 15 digits are given, due to truncation, the answers are certified up 
to the last digit. To summarize accuracy, the average LRE value is given for each model. Moler [19, 
Chapter 5] discussed this data set in problem 5.10 noting that this problem is "controversial" and that there 
are "several opinions about whether or not this is a reasonable problem." There is no disagreement over the 
fact that this is a hard problem and thus makes an excellent candidate for stressing a solution method or 
software implementation. McCullough [17] reports no solution for SAS or SPSS but LRE values of 7.1, 7.0 
and 7.8 for SPLUS for coefficients, SE and r, respectively. These LRE values are in line with what one 
would expect with a QR solution using real*8 data. Somewhat better results are reported for B34S in Table 
4. 
21 The author has used the LINPACK code since 1979. These results were not expected and seem to be 
related to the extreme values in the X matrix in the Filippelli data. When real*16 is used, accuracy of the 
LINPACK SVD routine improves. 
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 Experiments 10-12 study the effect of using LAPACK's SVD routine in place of 
LINPACK. For experiment 10, the coefficient LRE jumps to 7.490, which is quite good 
and in fact beats the QR LRE reported for experiment  1. This value is far better than the 
LINPACK LRE of 2.195.22 However, the LRE of the SE is poor with a LRE of 1.910,  
which is less than that found with the LINPACK code of 2.132. The LRE of   of 
1.606 is also less than the LINPACK LRE of 3.258. Since the SE requires knowledge of 

'e e

1( ' )X X − , calculated as 1 2( ' ) 'X X V V− −= Θ
2

, extreme values along the diagonal of  may 
be causing errors when forming 

Θ
−Θ . However, this possibility does not explain the poor 

performance of the residual sum of squares LRE of 1.606.23 The reason may be related to 
the fact that the data set has such high 10x  values that minor coefficient differences will 
result in substantial changes in the relative residual sum of squares. 
  
  

                                                

Experiments 13-15 first load the data in real*16 and proceed to the same routines 
as used for experiments  4 - 6.  Here we see LRE numbers of 14.68 14.99 and 15.00 for 
the Cholesky experiment and 14.79, 14.96 15.00 for the QR experiment which is the 
same as SVD (LINPACK). These are close to perfect answers. Table 5 lists the 
coefficients obtained for experiment  1, which used real*8 data while Table 6 lists the 
exact coefficients obtained for the QR using data read directly into real*16. Experiments 
13-15 show gain from reading the Filippelli data set in real*16. Since all there 
experiments produced similar LRE values, it suggests that if the data are read with 
enough precision, the results are less sensitive to the estimation method. This finding has 
important implications for data base design and is similar to what was found with the 
variance calculations in section 2. The next task is to study less extreme (stiff) data sets 
and observe the results. 

 
22 McCullough [18] Used LAPACK QR and SVD routines to estimate the coefficients of the Filippelli data 
finding that "QR generally returns more accurate digits than SVD." The LRE values found were 7.4 and 6.3 
respectively.  For S-PLUS he found 8.4 and 5.8, respectively, where the underlying routines were not 
known.   
23 The sum of squares was tested against the published value of   0.795851382172941E-03. The LAPACK 
SVD routine obtained 0.8155689538070673E-03. 
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Table 4. LRE for Various Approaches to an OLS Model of the Filippelli Data 
_____________________________________________________________ 
Various options of real*8 data                                                         
  
Experiment  TYPE           COEF       SE         RSS_LE                                
     1      QR            7.306       7.415       8.368                                
     2      ACC_1         8.118       8.098       9.803                                
     3      ACC_2         8.118       8.098       9.803                                
     4      R16_CHOL      7.924       8.708       8.167                                
     5      R16_QR        7.924       8.708       8.167                                
     6      SVD           2.195       2.132       4.039                                
     7      SVD_ACC1      1.901       2.431       3.258                                
     8      SVD_ACC2      1.901       2.431       3.258                                
     9      SVD_R16       7.924       8.708       8.167                                
    10      SVD_LAPK      7.490       1.910       1.606                                
    11      SVD2ACC1      7.490       1.910       1.606                                
    12      SVD2ACC2      7.490       1.910       1.606 
 
Various Options using Data read directly in real*16 
 
    13      R16_CHOL      14.68       14.99       15.00                                 
    14      R16_QR        14.79       14.96       15.00                                
    15      R16_SVD       14.79       14.96       15.00                                
___________________________________________________________ 
Experiments 4, 5 and 9 involve reading data first into real*8 and then converting the data 
to real*16. Experiments 1-3, 6-8 and 10-12 involve real*8 data. Experiments 13-15 use 
data read directly into real*16. See section 2.1 for a detailed discussion of the methods 
used, the data and the software and settings involved. The coefficients obtained for 
experiment # 1 and 14 are listed in Tables 5 and 6.
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Table 5 Coefficients and SE Estimated Using QR on Real*8  Filippelli Data 
__________________________________________________________________ 
         Test Value                     Value Obtained         LRE 
Coef 1  -2772.179591933420             -2772.179723094652      7.33                                         
Coef 2  -2316.371081608930             -2316.371192269638      7.32                                         
Coef 3  -1127.973940983720             -1127.973995395338      7.32                                         
Coef 4  -354.4782337033490             -354.4782509735776      7.31                                         
Coef 5  -75.12420173937571             -75.12420543777237      7.31                                         
Coef 6  -10.87531803553430             -10.87531857690271      7.30                                         
Coef 7  -1.062214985889470             -1.062215039398714      7.30                                         
Coef 8  -0.6701911545934081E-01        -0.6701911887876555E-01 7.29                                         
Coef 9  -0.2467810782754790E-02        -0.2467810910390330E-02 7.29                                         
Coef 10 -0.4029625250804040E-04        -0.4029625462234867E-04 7.28                                         
Coef 11 -1467.489614229800             -1467.489683023960      7.33                                         
   
Mean      LRE    7.306448565286121                                                                           
Variance  LRE    2.587670394878226E-04                                                                       
Minimum   LRE    7.280096349919187                                                                           
Maximum   LRE    7.329023461850447                                                                           
                                                     
SE 1  559.7798654749500                559.7798867059487       7.42                                        
SE 2  466.4775721277960                466.4775900975754       7.41                                        
SE 3  227.2042744777510                227.2042833290517       7.41                                         
SE 4   71.64786608759270                71.64786889794284      7.41                                         
SE 5   15.28971787474000               15.28971847592676       7.41                                         
SE 6    2.236911598160330               2.236911685945726      7.41                                         
SE 7    0.2216243219342270              0.2216243305780890     7.41                                         
SE 8    0.1423637631547240E-01          0.1423637686503493E-01 7.41                                         
SE 9    0.5356174088898210E-03          0.5356174292732132E-03 7.42                                         
SE 10   0.8966328373738681E-05          0.8966328708850490E-05 7.43                                         
SE 11 298.0845309955370               298.0845420801842        7.43                                         
   
Mean      LRE    7.414701487211084                                                                           
Variance  LRE    7.386168559949404E-05                                                                       
Minimum   LRE    7.405390067654106                                                                           
Maximum   LRE    7.429617565744895                                                                           
 
Residual sum of squares: 
RSS  0.7958513821729410E-03            0.7958513787598208E-03  8.37 
 

________________________________________________________________ 
Test values are reported on the left-hand side. LRE = log relative error. The coefficients 
report experiment # 1 from Table 4. The same LINPACK QR routine was modified by 
Stokes [31, 32] to run for real*16 data. Results for this experiment are shown in Table 6.
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Table 6 Coefficients estimated with QR using  Real*16 Filippelli Data 
 
Coefficients Using QR on Data Loaded into Real*16 
 
                                               LRE  
1.   –2772.1795919334239280284475535721        14.85              
2.   –2316.3710816089307588219679140978        15.00              
3.   –1127.9739409837156985716700141998        14.42              
4.   –354.47823370334877161073848496470        15.00              
5.   –75.124201739375713890522075522684        15.00             
6.   –10.875318035534251085281081177145        14.35              
7.   –1.0622149858894676645966112202356        14.66              
8.   –0.67019115459340837592673412281191E-01   15.00              
9.   –0.24678107827547865084085445245647E-02   14.85              
10.  –0.40296252508040367129713154870917E-04   15.00              
11.  –1467.4896142297958822878485135961        14.55              
   
Mean      LRE    14.788490320266543980835382276091684                                                        
Variance  LRE    6.3569618908829012635712782954099325E-0002                                                 
Minimum   LRE    14.347002403969724322813759016211991                                                        
Maximum   LRE    15.000000000000000000000000000000000                                                        
 
SE Using QR on DATA Loaded into Real*16        LRE  
1.   559.77986547494987457477254797527         15.00              
2.   466.47757212779645269310982974610         15.00              
3.   227.20427447775131062939817526228         14.86              
4.   71.647866087592737261665720850718         15.00              
5.   15.289717874740006503075678978592         15.00              
6.   2.2369115981603327555186234039771         14.91              
7.   0.22162432193422740206612983379340        14.74             
8.   0.14236376315472394891823309147959E-01    15.00              
9.   0.53561740888982093625865193118466E-03    15.00              
10.  0.89663283737386822210041526987951E-05    15.00              
11.  298.08453099553698520055234224439         15.00              
   
Mean      LRE    14.955903576675283545444986642213045                                                        
Variance  LRE    7.2174779096858864768608287934814669E-0003                                                  
Minimum   LRE    14.741319930323011772906976043000329                                                        
Maximum   LRE    15.000000000000000000000000000000000                                                        
  
Residual sum of squares 
0.79585138217294058848463068814293E-03         15.00             

LRE = log relative error. This is experiment # 14 from Table 4. LINPACK QR routine 
modified by Stokes [31, 32] to run with real*16 data. For this experiment the data was 
read directly into real*16. 
 
 
3.2 Analysis of the residual sum of squares of the Gas Furnace data 
 

The Box-Jenkins [3] Gas Furnace data have been widely studied and modeled and  
are close in difficulty to what are found in many  applied models in time series. While 
"correct" agreed upon answers are not available, it is possible to study the effect on the 
residual sum of squares using 11 approaches reported in Table 7.24  Since OLS minimizes 
the sum of squared errors, a "better" answer is one with a smaller . Using this criteria, 
the LINPACK general matrix solver DGECO, Experiment 3, is "best" followed closely 
by the LAPACK  general matrix solver, Experiment 4, and the LINPACK SVD routine, 
Experiment 10. Experiments 5 and 6 use the LAPACK general matrix solver that allows 
refinement and, in the case of Experiment 6 refinement and equilibration. These 
approaches did not do as well in determining a minimum  and were substantially 
more expensive in terms of computer time.  Of interest is why Experiment 1 and 

'e e

'e e

                                                 
24 Since this data set does not have the rank problems found with the Filippelli data, it is possible to attempt 
a number of alternative procedures. Not all these procedures should be used.  
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Experiment 8 did not produce the same answer since they both used the LINPACK 
Cholesky routines. The answer relates to the way the coefficients are calculated. In the 
former case the Cholesky R is used to obtain the coefficients without explicitly forming 

1( ' )X X −  using the LINPACK routine DPOSL, while in the latter case 1( ' )X X −  is 
formed from R using DPODI.  In general, the answers are very close for this exercise. 

x

'e e

                              

0β =

 
   

Table 7 Residual Sum of Squares on a VAR model of Order 6 – Gas Furnace Data 
________________________________________________________________ 
Residual Sum of Squares for various methods 
1.  OLSQ using Linpack Chosleky – solving from R   16.13858295915815 
2.  OLSQ using LINPACK QR                          16.13858295915821 
3.  OLSQ using LINPACK DGECO                       16.13858295915803 
4.  OLSQ using LAPACK DGETRE-DGECON-DGETRI         16.13858295915806 
5.  OLSQ using LAPACK DGESVX                       16.13858295935751 
6.  OLSQ using LAPACK DGESVX with equilibration    16.13858295963500 
7.  OLSQ using LAPACK DPOTRF-DPOCON-DPTTRI         16.13858295915812 
8.  OLSQ using LINPACK DPOCO-DPODI                 16.13858295915811 
9.  OLSQ using LINPACK DSICO-DSIDI                 16.13858295915814 
10. OLSQ using SVD Linpack                         16.13858295915808 
11. OLSQ using SVD Lapack                          16.13858295915810                                        

_________________________________________________________________ 
Model estimated was gasout=f(gasout{1 to 6}, gasin{1 to 6}). Data from Box-Jenkins 
[3].  Data studied in Stokes [32]. Experiment 1 solves for β  using Cholesky R directly. 
Experiments 3-9 form 1( ' )X X − . 
 
3.3 Pontius and Eberhardt  data 
 
 The StRD Pontius data are classified as of a lower level of difficulty, although 
more challenging than the gas furnace data studied in the prior section. The Pontius data 
consists of 40 observations of a model of the form 2

0 1 2y xβ β β= + +  for a model which 
is almost a perfect fit. The eigenvalues of ( ' )X X , as calculated by the EISPACK  routine 
RG, were 0.8109E+13, 0.7317E+27, 3.613, giving a condition estimate that tripped 
the condition tolerance in the  LINPACK LU and Cholesky routines for both real*8 and 
real*4 data. Calculations were "forced" by ignoring this check.25 Results are reported for 
a number of experiments in Table 8 that vary precision, method of calculation and degree 
of Fortran optimization for real*4 data. The base method was the QR for real*8 data 
which gives a LRE = 13.54 for β . When accuracy was enabled the LRE for the SE and 

 increased slightly from 12.39 to 12.51 and 12.09 to 12.21 respectively in 
experiments 1 and 2. The LINPACK SVD produced a LRE of 13.92, 13.92 and 13.53 for 
the coefficient, the SE and , respectively, while for LAPACK these were 13.48, 12.74 'e e

                   
25 The same data was estimated in Windows RATS [4] version 6.0. While the reported coefficients agreed 
with the benchmark for 11, 11 and 14 digits, respectively, RATS unexpectedly produced a SE of 0.0 and a t 
of 0.0 for the 2β  term. The "certified" coefficients and standard errors are:   
 

 0.673565789473684E-03    0.107938612033077E-03                   

1β =  0.732059160401003E-06    0.157817399981659E-09                   

2β = -0.316081871345029E-14    0.486652849992036E-16                   
 
which produce a t for 2β  of  -64.95, not zero. 
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and 12.93, respectively, in Experiments 3 and 4. Here, using accuracy as a criteria, 
LINPACK edged LAPACK. Since in the Filippelli data set the reverse was found, there 
appears to be no "best" SVD routine for all cases.  In addition to accuracy, there are other 
aspects of the selection process that include relative speed of execution (tested in Table 3 
and found to be a function of the size of the problem and computer chip) and memory 
requirements that are not tested here since they are published.26 
 

Experiments 5-8 show forced LINPACK LU and Cholesky models for real*8 
data. In Experiments 7-8, added accuracy in the accumulators was enabled. Slight 
accuracy gains were observed, especially in the RSS calculation where the LRE jumped 
from 12.77 & 12.73 to 13.23 and 13.39, respectively. What is interesting is that in this 
case, even though the condition of ( ' )X X  was large, the LU and Cholesky approaches 
were able to get reasonable answers. The LINPACK condition check appears to be 
conservative since in the usual case the software would not attempt the solution of this 
problem. 

 
Experiments 9-14 concern real*4 data.27 Again, the QR was found to be most 

accurate, with scores of 5.36, 6.01 and 5.65 for the coefficients, SE's and RSS, 
respectively. These runs were made with code compiled by Lahey Fortran version 7.10 
running opt = 1. When accuracy enhancement was enabled, the LRE for the SE fell from 
6.01 to 4.37. This difference was traced to the fact that the BLAS routine SDOT is  

                                                

optimized to hold data in registers while the higher accuracy routine SDSDOT did not 
optimize to the same extent. This is shown when the same calculation was done with 
opt=0.  the QR SE accuracy was 4.21 and 4.37 for non-accuracy and accuracy-enabled 
code respectively. Higher accuracy was observed for opt=1 LU-forced of 5.27 vs 4.80 for 
opt=0 calculations. Why the forced Cholesky experiment seems to run more accurately at 
opt=0 than opt=1 (see Experiment 12) is not clear. What seems to be the case is that the 
level of optimization and its resulting changes in registers seems to make a detectable 
difference only with real*4 precision data. A strong case can be made not to use this 
precision for this problem. When real*8 calculations are used, these knife edge type 
differences are not observed. 
  

 
26 For LAPACK the memory was set to the suggested amount from the first call to the routine. 
Experimentation with alternative LAPACK memory, possible with the B34S system implementation of 
LAPACK, was not attempted for his paper. 
27 Data was first read in real*8. Then the B34S routine  RND( ) first checked for maximum and minimum 
allowable real*4 size, using the Fortran functions HUGH( ) and TINY( ). Next, the real*8 data was 
written to a buffer, using g25.16, and re-read into real*4, using the format g25.16. This approach gives a 
close approximation to having read the data directly into real*4. Use of the Fortran function sngl( )  can be 
dangerous in that, among other things, range checking is not performed. 
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Table 8 LRE for Various Estimates of Coef, SE  and RSS of  Pontius Data 
Real*8 Data 
#  Method     COEF   SE     RSS  
1. QR              13.54   12.39  12.09  
2. QR_AC         13.52   12.51  12.21  
3. SVD-LINPACK     13.92   13.92  13.53  
4. SVD_LAPACK      13.48   12.74  12.93  
5. LU-Forced    12.61   13.02  12.77  
6. Chol-Forced  12.11   13.00 12.73 
7. LU-Forced_AC    12.77   13.61  13.23  
8. Chol-Forced_AC  12.17   13.63 13.39  
 
Real*4 Data Optimization = 1 
9.     QR         5.36  6.01  5.65   
10.    QR_AC           5.36  4.37  4.06   
11.    LU-Forced   3.93  5.27  5.36    
12.    Chol-Forced   3.97  3.36  3.06   
13.    LU-Forced_AC   3.95  5.30  4.78     
14.    Chol-Forced_AC   4.01  3.32  3.02 
 
Real*4 Data Optimization = 0 
      
9.     QR                     5.36    4.21    3.91 
10.    QR_AC           5.36  4.37  4.06 
11.    LU_Forced              4.31    4.80    4.45 
12.    Chol_Forced            4.48    4.51    4.26 
13.    LU_Forced_AC           3.95    5.30    4.78 
14.    Chol_Forced_AC         4.16    3.79    3.48   
_______________________________________________________________________ 
All data were initially read in real*8. For real*4 results data were then converted to 
real*4. Forced means that the LINPACK condition check has been bypassed for testing 
purposes. All reported LRE values are for the means. All real*4 tests have been done 
with LINPACK routines. Real*4 accumulators have not been enabled in cases where 
_AC is not added to the method name.  
 
 xThe Eberhardt data consist of 11 observations of a one input model 1y β= . The 
level of difficulty is rated as average. Results are shown in Table 9. Here the Cholesky, 
the LINPACK SVD and the LAPACK SVD all produce 100% identical LRE values of 
14.72, 15.00 and 14.91 respectively. For the QR the Coefficient LRE was 14.72 while the 
SE and residual LRE's were marginally less at 14.40 and 14.05. Here again the methods 
being considered run very close together.  
 
Table 9 LRE for QR, Cholesky, SVD LINPACK and LAPACK for Eberhardt Data 
_______________________________________________________________________ 
Method         COEF        SE          RSS 
QR            14.72       14.40       14.05 
Chol          14.72       15.00       14.91 
SVD-LINPACK   14.72       15.00       14.91 
SVD-LAPACK    14.72       15.00       14.91 
_______________________________________________________________________ 
All data read in real*8. 
 
 The above results suggest that in certain problems that have a high degree of 
multicollinearity, the results are sensitive to the level of precision of the calculation as 
well as the method of the calculation. A challenging example was the Filippelli 
polynomial data set which was discussed earlier. However, the discussion was not 
complete because the real*16 QR results were only compared to the 15-digit "official" 
benchmark, and not a benchmark with more digits. Since real*16 will give more than 15 
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digits of accuracy, an important final task for the next section is to extend the Filippelli 
benchmark, using variable precision arithmetic to benchmark the accuracy of the real*16 
results obtained.  
 
4. Variable Precision Results 
 
 The variable precision library developed by Smith [30] was implemented in the 
B34S to extend the Filippelli benchmark and thus fully test the true accuracy of the 
reported real*16 results. The LINPACK LU inversion routines DGECO,  DGEFA and 
DGEDI were rewritten to allow variable precision calculations. What was formerly a 
real*8 variable became a 328 element real*8 vector.  Simple statements, such  as 
A=A+B*C,  had to be individually coded, using a customized pointer routine, 
IVPAADD(  ) that would address the correct element to pass to a lower level routine to 
make the calculation. A simple example shows how this is done: 
 

c 
c     if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k)) 
c 
      if(vpa_logic(kindr, 
     * z(ivpaadd(kindr,k,1,k,1)),'ne',   vpa_work(i_zero)) )then 
      call vpa_mul(kindr,vpa_work(i_mone),z(ivpaadd(kindr,k,1,k,1)), 
     *                   vpa_work(iwork(4))) 
      call vpa_func_2(kindr,'sign',vpa_work(i_ek), 
     *                             vpa_work(iwork(4)), 
     *                             vpa_work(iwork(5)) ) 
      call vpa_equal(kindr,vpa_work(iwork(5)),vpa_work(i_ek)) 
      endif 

 
vpa_work( ) is a 328 by 20 work array.  The line z(ivpadd(kindr,k,1,k,1) 
addresses the kth element of Z, which is 328 by k, and compares it to a constant = 0.0 
saved in vpa_work(i_zero). If these two variables are not equal then the three calls 
are executed to solve ek = dsign(ek,-z(k)). The first call forms –z(k) and places 
it in VPA_work(iwork(4)). The variable vpa_work(i_mone) contains –1.0. 
Next, the SIGN  function is called and the result placed in VPA_work(iwork(5)). 
Finally a copy is performed. This simple example shows what is involved to "convert" a 
real*8 program to do VPA math. The results can be spectacular.28  
 
 Table 10 shows the Filippelli Data set benchmark, an extended printout of the QR 
real*16 results and the expanded Filippelli benchmark calculated with VPA data to 40 
digits. A ruler listed at the top table is designed to assist the reader in determining at 
which digit there is a difference. Consider coefficient # 1. The VPA beta agrees with the 
real*16 QR beta up to the 28th digit, which is far beyond the 15th digit, which was all that 
was listed for the "benchmark"  which is shown again in Table 10. The VPA experiment 
documents that the real*16 calculation is in fact substantially more accurate than the best 
real*8 QR, which produced, on average 7 digits, as reported in Table 5. Recall that the 

                                                 
28 The job  vpainv, in paper_86.mac which is distributed which B34S, illustrates the gains in 
accuracy for alternative  precision settings. Assuming a matrix X,   X*inv(X) produces off diagonal 
elements in the order of  |.1e-1728|,  which is far superior to what can be obtained with real*4, real*8 or 
real*16 results which are also shown in the test problem. The B34S VPA implementation allows these 
high-accuracy calculations to be mixed with lower precision commands, using real*4, real*8 and real*16, 
since data can be moved from one precision to another. This allows experimentation concerning how 
sensitive the results are to accuracy settings.  
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"converted" real*16 results (data converted from real*8 to real*16), reported in Table 4 
Experiment 5, had only a marginally better LRE of 7.924 than the real*8 QR results that 
found the LRE was 7.31. Although in Tables 4 & 6 it was reported  that the "true" 
real*16 QR results (data loaded directly into real*16), had a LRE value was 14.79, once 
we had the VPA benchmark for 40 digits, it was apparent that the LRE was substantially 
larger. Even calculations of the 10th and 11th coefficients, when compared with the VPA 
data, produced 27 digits of accuracy. It should be remembered that these impressive 
results for real*16 are due to both the accuracy of the calculation and the fact that the 
data was directly read into real*16, not converted from real*8 to real*16.  As we have 
shown, the data base precision makes a real difference in addition to the precision of the 
calculation. The important implication is that the inherent precision of the calculation 
method will be no help and in fact may give misleadingly "accurate" results unless the 
data is read with sufficient precision. 29 
  
Some of the key lesions of this paper are listed in Table 11. The main finding is the 
accuracy tradeoff between the precision of the data and the calculation method used. In 
all cases, it is important to check for rank problems before proceeding with a calculation. 
The less the precision of the data the more appropriate it is to consider higher accuracy 
solution methods such as the QR and the SVD approach.30 
   

                                                 
29 In order to 100% isolate the VPA results from data reading issues, the loading of data into the VPA array 
proceeded as follows. The real*16 data was printed to a character*1 array using e50.32. Next, the VPA 
string input routine was used to convert this character*1 array into a VPA variable. This way both real*16 
and the VPA results were using the same data. Experiments were also conducted by reading the data in 
character form directly into the VPA routines. For this problem both methods of data input into VPA made 
no difference since there were relative few digits. In results not reported but available in paper_86.mac, 
the Filippelli problem was "extended" by adding 11 20, ,x x  to the right hand side to make the problem 
more difficult (stiff). Both the VPA and the native real*16 experiments were run and both successfully 
solved the problem, suggesting "reserve" capability to handle a stiff problem.    
 
30 While the main trust of the paper has been to show the effect of various factors on the number of 
"correct" digits of a calculation, in applied econometric work an important consideration is how many 
digits to report. If the government data is known only to k digits, many researchers argue that only k digits 
of accuracy should be reported. In many situations, this is appropriate although such a practice makes it 
difficult to access the underlying accuracy of the calculation routines used in the software system. Clearly if 
variables such as  or  are to be calculated, all estimated digits should be used to insure  etc. ŷ ê 0e =∑
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Table 10 VPA Alternative Estimates of Filippelli Data set 
_______________________________________________________________________ 
                            10        20        30        40        50 
                      12345678901234567890123456789012345678901234567890 
                      -------------------------------------------------- 
  VPA BETA   1      -.2772179591933423928028447556649596044434M+4 
  Real*16 QR beta  -0.2772179591933423928028447553572108500000E+04 
  Answer for coef  -0.2772179591933420E+04 
  VPA SE     1       .5597798654749498745747725508021651489727M+3 
  Real*16 QR SE     0.5597798654749498745747725479752748700000E+03 
  Answer for SE     0.5597798654749500E+03 
 
  VPA BETA   2      -.2316371081608930758821967916501044936138M+4 
  Real*16 QR beta  -0.2316371081608930758821967914097820200000E+04 
  Answer for coef  -0.2316371081608930E+04 
  VPA SE     2       .4664775721277964526931098320484471124838M+3 
  Real*16 QR SE     0.4664775721277964526931098297461005100000E+03 
  Answer for SE     0.4664775721277960E+03 
 
  VPA BETA   3      -.1127973940983715698571670015266249731414M+4 
  Real*16 QR beta  -0.1127973940983715698571670014199826100000E+04 
  Answer for coef  -0.1127973940983720E+04 
  VPA SE     3       .2272042744777513106293981763510244738352M+3 
  Real*16 QR SE     0.2272042744777513106293981752622826700000E+03 
  Answer for SE     0.2272042744777510E+03 
 
  VPA BETA   4      -.3544782337033487716107384852595281875294M+3 
  Real*16 QR beta  -0.3544782337033487716107384849646966900000E+03 
  Answer for coef  -0.3544782337033490E+03 
  VPA SE     4       .7164786608759273726166572118158443735326M+2 
  Real*16 QR SE     0.7164786608759273726166572085071780100000E+02 
  Answer for SE     0.7164786608759270E+02 
 
  VPA BETA   5      -.7512420173937571389052207557481187222874M+2 
  Real*16 QR beta  -0.7512420173937571389052207552268365400000E+02 
  Answer for coef  -0.7512420173937570E+02 
  VPA SE     5       .1528971787474000650307567904607140782062M+2 
  Real*16 QR SE     0.1528971787474000650307567897859220700000E+02 
  Answer for SE     0.1528971787474000E+02 
 
  VPA BETA   6      -.1087531803553425108528108118290083531722M+2 
  Real*16 QR beta  -0.1087531803553425108528108117714492600000E+02 
  Answer for coef  -0.1087531803553430E+02 
  VPA SE     6       .2236911598160332755518623413323850745016M+1 
  Real*16 QR SE     0.2236911598160332755518623403977080500000E+01 
  Answer for SE     0.2236911598160330E+01 
 
  VPA BETA   7      -.1062214985889467664596611220591597363944M+1 
  Real*16 QR beta  -0.1062214985889467664596611220235596600000E+01 
  Answer for coef  -0.1062214985889470E+01 
  VPA SE     7       .2216243219342274020661298346608897939687M+0 
  Real*16 QR SE     0.2216243219342274020661298337934033000000E+00 
  Answer for SE     0.2216243219342270E+00 
 
  VPA BETA   8      -.6701911545934083759267341228848844976973M-1 
  Real*16 QR beta  -0.6701911545934083759267341228119136200000E-01 
  Answer for coef  -0.6701911545934080E-01 
  VPA SE     8       .1423637631547239489182330919953278852498M-1 
  Real*16 QR SE     0.1423637631547239489182330914795936200000E-01 
  Answer for SE     0.1423637631547240E-01 
 
  VPA BETA   9      -.2467810782754786508408544524189188555839M-2 
  Real*16 QR beta  -0.2467810782754786508408544524564670500000E-02 
  Answer for coef  -0.2467810782754790E-02 
  VPA SE     9       .5356174088898209362586519329555783802279M-3 
  Real*16 QR SE     0.5356174088898209362586519311846583900000E-03 
  Answer for SE     0.5356174088898210E-03 
 
  VPA BETA  10      -.4029625250804036712971315485276426445821M-4 
  Real*16 QR beta  -0.4029625250804036712971315487091695800000E-04 
  Answer for coef  -0.4029625250804040E-04 
  VPA SE    10       .8966328373738682221004152725410272047808M-5 
  Real*16 QR SE     0.8966328373738682221004152698795102200000E-05 
  Answer for SE     0.8966328373738680E-05 
 
  VPA BETA  11      -.1467489614229795882287848515307287127546M+4 
  Real*16 QR beta  -0.1467489614229795882287848513596070800000E+04 
  Answer for coef  -0.1467489614229800E+04 
  VPA SE    11       .2980845309955369852005523437755166954313M+3 
  Real*16 QR SE     0.2980845309955369852005523422443903600000E+03 
  Answer for SE     0.2980845309955370E+03 

_____________________________________________________ 
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Table 11. Lessons to be learned from this Paper 
_______________________________________________________________________ 
 
1. The QR method of solving an OLS regression model can provided 1-2 more digits of 
accuracy and in fact may be the only way to successfully solve a "stiff" or multicollinear 
model. 
 
2. The precision in which data are initially loaded into memory (for example, single 
precision) impacts accuracy, even in cases when it is later moved to a higher precision 
(for example double precision) for the calculation. This suggests that data should be read 
into the precision in which the calculation is made to avoid numeric representation 
accuracy issues that occur when the precision of the data is increased. 
 
3. In many cases, accuracy gains can be made by boosting the precision of accumulators 
such as the BLAS routines for sum, absolute sum and dot product. Such routines should 
be used throughout software systems and will increase the accuracy of the variance and 
other calculations. It is desirable to be able to switch on and off such accuracy 
improvements to test the sensitivity of the given problem to these changes.  
 
4. Data base design should take into account the needs of the users who may want to read 
data into higher-than-usual precision. For data that is not transformed in a data bank, the 
user should be able to get all reported digits of precision without rounding (due to 
numeric representation) loss. 
 
5. The new 64-bit computers will make higher-precision calculations more viable and 
may prove useful for the estimation of problems requiring high precision for their 
successful solution. Real*16 and complex*32 will not have to be emulated in software by 
the compilers. These technological changes on the hardware side suggest that software 
designers may want to offer greater than double precision math in future releases of their 
products. 
 
6. The lower the precision of the data, the more imperative it is to check for rank 
problems, use high-quality numeric routines (LAPACK/LINPACK etc.) and utilize 
inherently higher accuracy solution methods, such as the QR. For many problems, 
however, if data are read with sufficient accuracy, this may not be needed. 
 
 7. If data are not initially read with sufficient precision, high-accuracy methods of 
calculation, such as the QR, can provide misleadingly "accurate" results that are in fact 
tainted by numeric representation issues inherent in the initial data read. This initial data 
"corruption" cannot be "cured" by any subsequent increase in data precision.  The more 
"stiff" the problem, the more this becomes an important consideration.  
______________________________________________________________________ 
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5. Conclusion 
 
 A number of import conclusions emerge from the tests run in this paper. These 
have been summarized in Table 11. The first and foremost is that accuracy improvements 
can and should be made to production econometric software to insure that accuracy 
problems do not unexpectedly occur. The work of McCullough and Vinod [14] argued 
that the software developers should use an improved formula to calculate the variance. 
While technically correct, results reported in this paper suggest that if accuracy 
improvements are made to a number of key BLAS routines, not only will the accuracy of 
the variance calculation be improved, but, more importantly, depending on how 
widespread BLAS has been implemented in the software, there will be many other 
important accuracy improvements.  In addition, the user has the ability to switch back and 
forth to see the effect of accuracy enhancements on the results of specific problems.31 
 
 Renfro [24, 25] has argued for data base standards. An important decision in 
implementing a data base is the precision of numbers saved. It has been argued that since 
we may only know numbers to a small number of digits, then single precision storage is 
sufficient. The problem with this view is that while we may know only a relatively few 
digits, if too small a precision is used, these digits get saved in a manner that precludes 
their use later at higher precision due to accuracy of saving these few digits. If the digits 
were saved in character form, then saving only the number of digits that are known would 
be technically correct. This "solution" would not work if the data had been transformed to 
a log for example, since more digits would be needed. Results reported in this paper 
illustrate that for difficult problems it makes a difference whether real*16 calculations are 
being made with data read into real*8 and then converted to real*16 versus data that are 
read directly into real*16. This finding suggests that for data saved in real*4, and 
analyzed in real*8, the problems may become substantially more acute. 
 
 Press [21], McCullough and Vinod [14], Greene [7] and others have argued for 
the SVD or QR approach to ordinary least squares estimation since there are accuracy 
gains. Results presented here suggest that the QR is quite accurate as is the SVD for most 
problems. However, with a stiff OLS problem, such as the Filippelli data set, even with 
quality software, such as LINPACK and LAPACK, it can make a difference what SVD 
routine is being used. For less difficult data sets, such as Pontius, Eberhardt and a VAR 
model on the gas furnace data, the selection of estimation method is less critical, provided 
that rank tests are made so that multicollinearity can be detected. McCullough and Vinod 
[15] and Stokes [33] suggest that more than one software system be used for nonlinear 
estimation. Results presented in this paper suggest that if the condition of 'X X  will not 
allow estimation with the space-saving Cholesky approach, the QR or SVD approach 
should be used. In cases where the SVD method is selected, it is important to try different 
software systems.  While moving the data to a higher precision before making the OLS 
calculation may give the illusion of assisting in the solution, it will most likely mask the 
effect of truncation of the data that occurred when it was initially read at the lower 
precision. A better choice would be to read directly into the higher precision.32 
  

                                                 
31 By having the accuracy improvements able to be switched on and off,  it is possible to replicate stock 
LINPACK and LAPACK results.  
32 If the data was coming from SAS or another system that only supports real*8, the user is trapped if a 
move to real*16 is required. 
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