
Journal of Economic and Social Measurement 30 (2005) 9–38 9
IOS Press

The sensitivity of econometric results to alternative
implementations of least squares

Houston H. Stokes
Department of Economics, University of Illinois at Chicago, 601 South Morgan Street (M/C 144),
Chicago, IL 60607, USA
E-mail: hhstokes@uic.edu

This paper is concerned with a detailed study of the accuracy tradeoffs of differences in data precision
and alternative approaches to the estimation of OLS models. The implications of the analysis of a variety
of problems, most of which have known answers, extend far beyond OLS modeling and directly impact
any empirical analysis when the matrices are at all ill conditioned or “stiff.” While the focus here is on
linear modeling, the findings are equally, if not more, important to nonlinear modeling. Independent of
the effect of the algorithm used, the precision in which the data was initially read was found to have
a major impact on accuracy, even when the data was subsequently moved to a higher precision. This
finding, illustrated best with the extremely multicollinear Filippelli data set, suggests that if a data base
standard is agreed upon, the precision of the data saved will be of critical importance. By the use of
variable precision arithmetic software, an extended benchmark was developed for the Filippelli data and
the results compared to the real*8 and real*16 QR results. Much of the software developed for this paper
has been put in the public domain to be used by other researchers.

1. Introductory remarks

1.1. Introductory remarks

In the last 40 years changes in operating systems, computer hardware, compiler
technology and the needs of research in applied econometrics have all influenced
econometric software development and the environment of statistical computing.
However, despite a number of articles by McCullough and Vinod [14,15] and Ren-
fro [22,23] and others, many economists are not aware of the impact on the accuracy
of the calculation of using the alternate solution methods and data precisions that
have been implemented in various statistical packages. Furthermore, less thought
has usually been given to the impact on the accuracy of the final calculation that can
be traced to the initial precision of the data saved in memory before it was moved to a
higher precision for the calculation.1 Where the moment matrix does not have a high
degree of multicollinearity, the selection of the appropriate method of analysis may

1For example many software systems allow real*4 data storage but move the data to real*8 to make a
calculation. In many cases the resulting accuracy is not the same as what would be obtained with a direct
read into real*8. A simple example involving 2.00/4.11 will illustrate the problems of precision.

0747-9662/05/$17.00 © 2005 – IOS Press and the authors. All rights reserved

10 H.H. Stokes / The sensitivity of econometric results to alternative implementations

be less critical, provided double precision calculations are made and the underlying
linear algebra software used is of high quality. However, due to the popularity of
polynomial regression models and the present widespread use of long lag VAR and
error correction models, rank problems often occur as the moment matrix becomes
increasingly “stiff.” While the focus of this paper is on the estimation of OLS models,
many of the findings on how to increase accuracy can be used in nonlinear modeling
where rank issues can potentially be more serious. Using four data sets of vary-
ing difficulty, three of which have “certified” answers from StRD [27], the effect
of the estimation method on the number of correct digits is studied. In addition,
various means by which accuracy of a given method can be increased are discussed
and illustrated. A number of the alternatives considered involve modifications to
BLAS [10] software that should be used throughout a modern software system. The
consequence of these improvements will be reflected in improved accuracy of many
other calculations throughout the software system. The routines developed in this
paper have been released for general use and are described in some detail. Finally, the
relationship between real*16 (64 bit) estimation and the precision of the underlying
data storage is illustrated.

While data read into double precision (real*8) can be converted to real*16 to obtain
greater accuracy, the results reported in the paper document the gain in accuracy
if the data is directly read into real*16.2 This finding, illustrated best with the
extremely multicollinear Filippelli polynomial regression data set, suggests that if a
data base standard is agreed upon, the precision of the data saved will be of critical

str=>vpa .4866180048661800486618004866180048661800486618004866M+0
r*8=>vpa .48661800486618001080454992664677M+0
r*8=>r*16 .48661800486618001080454992664677E+00
str=>r*16 .48661800486618004866180048661800E+00
r*8=>r*8 .48661800486618000000000000000000E+00
r*4=>r*4 .48661798200000000000000000000000E+00
The line str>vpa lists the exact answer obtained when the data (2.0 and 4.11) are read from a string into a
variable precision arithmetic (VPA) routine while the line r*8=>vpa shows what happens to accuracy when
the data are first read into real*8 or double precision, then moved to a vpa datatype. The line r*8=>r*16
shows what occurs when the data are first read into real*8, then converted to real*16 before making the
calculation. In this case the results are the same as what is obtained with r*8=>vpa but are inferior to the
line str=> r*16 where the data are read directly into real*16. The lines r*8=> r*8 and r*4=>r*4 show what
can be expected using the usual double precision and single precision math, respectively. The importance
of this simple example is it shows the effect of data storage precision and data calculation precision in
a very simple problem where each can be isolated. When there are many calculations needed to solve
a problem (to invert a 100 by 100 matrix by elimination involves a third of a million operations), round
off error can mount, especially when numbers differ in size. Strang [34, p. 32] notes “if floating-point
numbers are added, and their exponents c differ say by two, then the last two digits in the smaller number
will be more or less lost . . .”

2Real*4 or single precision on IEEE machines has a range of 1.18*10−38 to 3.40*1038 . This gives a
precision of 7–8 digits at best. Real*8 or double precision has a range of 2.23*10−308 to 1.79*10308 and
at best gives a precision of 15–16 digits. Real*16 has a range of 10−4931 to 104932 and gives up to 32
digits of precision. VPA or variable precision arithmetic allows variable precision calculations.

H.H. Stokes / The sensitivity of econometric results to alternative implementations 11

importance.3 By the use of variable precision arithmetic software, an extended
benchmark was developed for the Filippelli data and the results were compared to
the real*16 results to fully benchmark the gains of real*16 calculation. Testing of
real*16 implementations is of increased importance due to the coming availability
of 64 bit machines, which lower the cost of real*16/complex*32 calculation. While
most modern Fortran compilers have supported real*16 and complex*32 data types,
using software emulation, the availability of hardware implementations of these data
types will make their growing availability in software systems in the future more
likely. Since a number of software systems still save data and make calculations in
real*4, the Pontius data set, which is of intermediate difficulty, is estimated using a
variety of methods for real*8 data and real*4 data. The interesting result is while
methods of analysis that involved formation of (X ′X) failed the condition check for
both real*8 and real*4 data, if these checks were ignored, the results were surprisingly
good. The QR method, however, gave superior performance in terms of accuracy.
We next turn to some of the statistical issues before moving to a discussion of the
examples.

1.2. Statistical background

Assuming X is a matrix of N observations on K right-hand side variables and y
is a N element vector of values of the left-hand side variable, econometric textbooks
tell us that the estimated solution vector to the ordinary least squares problem is
β̂ = (X ′X)−1X ′y with coefficient standard errors as the square root of the diagonal
elements of σ̂2(X ′X)−1 where σ2 = (y − Xβ̂)2/(N − K). Usually, there is little
emphasis on how best to solve (X ′X)−1, or whether in fact to calculate it at all.
The condition of a matrix X, C(X), defined as the ratio of the largest to the smallest
singular value (to be defined below), can be used to help in this decision. Values
of C(X) obtained near 1 indicate the inverse of X ′X can be accurately formed and
the matrix is deemed to be well conditioned. However, if C(X) increases, there
are increased difficulties in obtaining the inverse accurately. It can be proved that
C(X ′X) = [C(X)]2. Since the formation of X ′X squares the condition, in cases
where there is multicollinearity and the condition was already large, methods of
solving for β̂ that do not require the formation of X ′X such as the QR (defined later)
and the SVD (defined later) may very well be the method of choice. The goal of this
paper is to illustrate the gains of such methods as well as to discuss various ways to
increase accuracy. Then impact of data precision will also be discussed.

If the inverse is desired, many practicing economists give little thought of the
choice of an inversion approach. Assuming a full rank system, since X ′X is positive

3The question is whether the data base produces a real*4 data value, a real*8 data value, or a character
representation of the exact digits of the basic data, which could then be read into the investigators precision
of choice.

12 H.H. Stokes / The sensitivity of econometric results to alternative implementations

definite, the Cholesky factorization has been found to be substantially faster by a factor
of at least 2 over a general matrix solution technique such as the LU factorization,
although this is usually not discussed.4 In discussing alternatives to the usual formula,
Greene [7, p. 175] 5 notes, “the loss of accuracy in least squares computations occurs
not in inverting X ′X but in accumulating it.” Greene goes on to note “the singular
value decomposition and QR decomposition . . . are generally the preferred approach
to the computation of least squares.”6 A major focus of the present paper is to study
empirically both “accumulation/precision issues” and “method of calculation issues,”
with the objective of showing what can be expected in terms of accuracy using various
approaches on a variety of linear test problems. The examples have been selected
to stress the software. All but one has been taken from the StRD data sets, which
have been designed to exhibit data stiffness.7 While the issue of accuracy was first
brought to the attention of the profession by the work of Longley [11], in recent years
a number of important papers by McCullough and Vinod [14,15], McCullough and
Renfro [13], McCullough [16–18] and Renfro [23,24] have demonstrated that this
is a subject that continues to be relevant today. This paper is a contribution to this
ongoing discussion.

1.3. Overview of the paper

After first briefly discussing the alternative approaches to estimation, such as LU,
Cholesky, QR and SVD, and why they might be used, this paper will outline a number
of modifications to the BLAS library of utility programs that will increase real*8,
real*16 and real*4 accuracy of the various approaches. 8 Issues of data storage,

4An exception is Judd [9, p. 60] who notes, “The advantages of the Cholesky decomposition is that it
involves only n3/6 multiplications and n square roots, which is about half the cost of Gaussian elimination
for large n. It is also more stable than LU decomposition, particularly since there is no need for pivots.”
Once the Cholesky R is found, it is possible to directly solve the system of equations without explicitly
obtaining (X′X)−1 . In a related paper on cointegration methods, Doornik and O’Brien [6] recommend
a number of numerically stable methods that include the QR and the SVD, with the former being fastest
and the latter being more suitable in reduced rank situations.

5In 2000 this was in the chapter on computation (3). In the 5th edition in 2005, much of this material
was moved to page 833 of Appendix A.

6Press [21, pp. 513–518] cautions the reader to use the QR method or the SVD method, except when
the problem is easy. Press comments on the speed loss of the SVD but notes, “Its great advantage, that it
(theoretically) cannot fail, more than makes up for its speed disadvantage.” Results reported later suggest
that not all SVD routines are created equal and use of the SVD can result in substantial accuracy loss in
some cases.

7StRD [27] documentation refers to the work of Simon and Lesage [28], who note that as the number of
constant leading digits increases, it becomes increasingly more difficult to make accurate computations.

8The changes to BLAS [10], LINPACK [5] and EISPACK [29] discussed in this paper and implemented
in B34S (Stokes [31,32]) are being made available for other researchers to be freely used in any software
systems, provided that attribution is given. The FTP library for this material is available under the research
page of www.uic.edu/∼hhstokes. The file sourc3.f contains changes and additions made to LINPACK,
BLAS and EISPACK. Other public domain code, such as FFTPACK, which was not modified, is also

H.H. Stokes / The sensitivity of econometric results to alternative implementations 13

whether to save data in real*8, real*4 or real*16, which have had little discussion in
the literature, will be explored, using known examples. 9 Finally, variable precision
arithmetic is used to extend a famous benchmark to validate the accuracy of the
reported real*16 calculations.

2. Brief notes on various approaches to making and improving an OLS Model

2.1. Problems in solving an OLS model using the usual formulas

Since (X ′X) is a positive definite matrix , if the system is full rank, rather
than using a LU factorization to calculate the inverse, one way to proceed is to
perform Cholesky decomposition and express (X ′X) = R′ R where R′ is lower
triangular. Rather than forming (X ′X) and losing accuracy in the process, the QR

approach expresses Q′X =
[
R
0

]
where Q is N by N and orthogonal (Q ′Q = I).

The QR approach to obtaining R is substantially more accurate, particularly in a
number of difficult problems shown later. Once the QR factorization is performed,
β̂ = R−1Q′y. If (X ′X)−1 is needed to obtain the SE, the more accurate R obtained
from the QR factorization of X can be used in place of the R obtained from a
Cholesky factorization of X ′X to obtain (X ′X)−1. The SVD approach factors
X = UΘV ′ where U is N by K , V is K by K and U and V are orthogonal. Θ
is a diagonal matrix with the singular values along the diagonal. 10 It is easy to

present in this file. Fortran code in this library can be freely placed in any software code, provided that
attribution is made to the source. The nature of these changes will be discussed later in this paper. The
file sourc2.f contains the LAPACK [1] library used and is basically unchanged over what is available from
netlib. Comments on the routines in sourc3.f are welcome and should be addressed to hhstokes@uic.edu.
In addition to these libraries, all jobs (that include data sets) and output that are used in this paper are
shown.

9Modern software systems, such as SAS [2] and RATS [4], save data in real*8 or double precision and
thus make the decision on data storage for the user. Up until recently this was the case for Matlab [12].
However, with the recent release (version 7.0 R14) this is no longer true. While the default data storage
precision is real*8, real*4 is also supported. The decision on precision for data storage becomes more
critical, since uninformed users can make a wrong choice. Results in this paper to be shown latter suggest
that substantial gains in accuracy can be made if data is saved internally in real*16, not the default
real*8. This finding suggests that real*4 storage of data may be more dangerous than previously thought.
Renfro [26] in 1980 and more recently in a major paper in 1995 [25] has discussed data base system
standards. In Fig. 1 of Renfro [25] it shows in single precision 6–7 digits are saved while in double
precision 12–14 digits are saved. The results reported later in this paper suggest the former standard may
be less than optimum, especially for data in log form.

10The singular values s(i) of X are the square root of the eigenvalues of X′X’. Thus[s(1)/s(k)]2 is
the condition of the matrix X′X, since the singular values are ordered from large to small. The singular
values of X′X are in fact the eigenvalues sorted from largest to smallest. If the condition of X′X is 10d

then the elements of (X′X)−1 “can usually be expected to have fewer significant figures of accuracy that
the elements of” X′X LINPACK [5, p. 1.1]

14 H.H. Stokes / The sensitivity of econometric results to alternative implementations

Table 1
Partial list of improvements to BLAS

subroutine real16add(i) Controls math accuracy
Scale a vector
subroutine dscal(n,da,dx,incx) Linpack
subroutine dqdscal(n,da,dx,incx) Math done in real*16
subroutine cqscal(n,za,zx,incx) complex*32 za complex*32
subroutine cqqscal(n,da,zx,incx) complex*32 da real*16
subroutine qscal(n,da,dx,incx) real*16
subroutine zscal(n,za,zx,incx) Linpack
subroutine zdscal(n,da,zx,incx) Linpack

Swap vectors for various precisions
subroutine dswap(n,dx,incx,dy,incy) Linpack
subroutine zswap(n,zx,incx,zy,incy) complex*16
subroutine qswap(n,dx,incx,dy,incy) real*16
subroutine cqswap(n,dx,incx,dy,incy) complex*32

Dot product
integer function idot(n,dx,incx,dy,incy)
real*8 function ddot(n,dx,incx,dy,incy) Linpack
real*8 function ddot 16(n,dx,incx,dy,incy) High accuracy using IMSL
real*8 function ddot 2(n,dx,incx,dy,incy) ACC2
real*16 function qdot(n,dx,incx,dy,incy) Real*16

Accuracy improvements to real*8 calculations
real*16 function qdble(x) real*8 to real*16
real*16 function qqdmult(a,b) real*16 mult of real*8
real*8 function dqdmult(a,b) real*16 mult of real*8
real*16 function qqdadd(a,b) real*16 add of real*8
real*8 function dqdadd(a,b) real*16 add of real*8
real*16 function qqdsub(a,b) real*16 sub of real*8
real*8 function dqdsub(a,b) real*16 sub of real*8
real*16 function qqddiv(a,b) real*16 div of real*8
real*8 function dqddiv(a,b) real*16 div of real*8
real*16 function qqdpow(a,b) real*16 ** of real*8
real*8 function dqdpow(a,b) real*16 ** of real*8

Sum absolute values
real*8 function dasum(n,dx,incx) Linpack
real*8 function dqdasum(n,dx,incx) real16add path
real*8 function dasum 2(n,dx,incx) acc2 path
real*8 function dzasum(n,zx,incx) Linpack
real*16 function qcqasum(n,zx,incx) complex*32 version
real*16 function qasum(n,dx,incx) real*16 version

Sum of a vector
real*8 function dsum(n,dx,incx) Linpack
real*8 function dqdsum(n,dx,incx) real16add path
real*8 function dsum 2(n,dx,incx) acc2
real*16 function qsum(n,dx,incx) real*16 version
real*16 function qsum 2(n,dx,incx) high accuracy real*16
complex*32 function cqsum(n,dx,incx) complex*32 version

H.H. Stokes / The sensitivity of econometric results to alternative implementations 15

Table 1, continued

integer function isum(n,dx,incx) integer*4
double complex function zsum(n,dx,incx) complex*16

Constant times a vector plus a vector
subroutine daxpy(n,da,dx,incx,dy,incy) Linpack
subroutine dqdaxpy(n,da,dx,incx,dy,incy) Real16add path
subroutine qaxpy(n,da,dx,incx,dy,incy) Real*16 version
subroutine cqaxpy(n,za,zx,incx,zy,incy) Complex*32 version

show that β̂ = (V ′)−1Θ−1U ′y = V Θ−1U ′y. Since calculation of (X ′X)−1 is
needed to obtain the SE of a OLS model, this can be obtained very quickly since it
can be shown that (X ′X)−1 = V Θ−2V ′ since (X ′X) = V Θ2V ′ and V ′ ≡ V −1.
A problem arises in cases when the diagonal elements of Θ get very small due to
multicollinearity and thus become very large when forming Θ−2, causing numerical
problems.

2.2. Simple modifications to BLAS to improve accuracy

In an important and widely cited paper, McCullough and Vinod [14] argued that
the standard formula would not calculate the variance accurately in a number of
test cases11, while their “corrected” formula would. While this was a useful and
important exercise to raise the consciousness of software developers on the need for
numerical accuracy, the fact that the variance formula in many software systems was
subsequently improved, and the software subsequently passed the benchmark test,
gave no assurance that the rest of the program was sufficiently accurate. Furthermore,
there was no really good way to test the sensitivity of results to accuracy without
extensive and often impractical code modifications. The BLAS routines, released in
1979 by Lawson and others [10], provided a fast and modular way to perform basic
calculations. The BLAS was extensively used in LINPACK [5] and subsequently
extended to BLAS levels 2 and 3 and used in LAPACK [1]. If these routines are used
throughout a software system, then changes in accuracy of basic calculations, such
as dot product (a =

∑n
i=1 xiyi), summation a =

∑n
i=1 xi and elementary vector

operations (y = ax+y), can be changed in one place and their effect on the resulting
accuracy of calculations measured in many other places. The B34S (Stokes [31,32])
made these changes and the code for these improvements has been released as part
of this article.12 A partial list of the key real*8 BLAS routines is given in Table 1.

11While the text book formula for the variance is
∑

(x − x)2/(n − 1), a formula less likely to have

rounding error is 1
(n−1

{
∑n

i=1
(xi − x)2 − 1

n
[
∑n

i=1
(xi − x)]2}.

12The changes to BLAS for inner products were to DDOT/ZDOTU/ZDOTC/QDOT/CQDOTU and
CQDOTC. For summation DSUM/ZSUM/QSUM/CQSUM were changed. The absolute sum routines
DASUM/QASUM were also changed as were the scale routines DSCAL/ZSCAL/QSCAL/CQSCAL and
the transformation routines DAXPY/ZAXPY/QAXPY/CQAXPY. It is to be noted that the Qxxxx and
CQxxxx routines were developed for B34S and are used to increase accuracy of real*16 and complex*32
data types. These are not the BLAS names.

16 H.H. Stokes / The sensitivity of econometric results to alternative implementations

Real*4 routines are not listed to save space.
As an example of what is involved in enhancing a BLAS routine, consider DDOT,

which was modified as

real*8 function ddot(n,dx,incx,dy,incy)
c
c forms the dot product of two vectors.
c This version has been simplified to not use unrolled loops.
c It is intended to show the simple changes needed to implement
c different accuracy paths. The unrolled loop version should be
c used in production code.
c
c Note: => dqddot is an IMSL routine!
c => ddot_16 uses HHS real*16 mult
c

implicit real*8(a-h,o-z)
double precision dx(*),dy(*),dtemp,ddot_16,dqddot
integer i,incx,incy,ix,iy,m,mp1,n
logical ison
common/real16/ison(3)
save/real16/

c
dtemp = 0.0d0
ddot = 0.0d0
if(n.le.0)return

c
if(ison(1))then
if(ison(2)) ddot=dqddot(n,dtemp,dx,incx,dy,incy)
if(.not.ison(2))ddot=ddot_16(n,dx,incx,dy,incy)
return
endif

c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1

c
do i = 1,n
dtemp = dtemp + (dx(ix)*dy(iy))
ix = ix + incx
iy = iy + incy
enddo

c
ddot = dtemp
return
end

to allow a branch to dqddot if ison(1) and ison(2) were .true. and ddot 16 if
ison(1) was .true. and ison(2) was .false. . The routine ddot 16 does real*16
math internally and has the same accuracy as dqddot. A version without unrolled
loops is

H.H. Stokes / The sensitivity of econometric results to alternative implementations 17

real*8 function ddot_16(n,dx,incx,dy,incy)
implicit real*8(a-h,o-z)

c
c forms the dot product of two real*8 vectors.
c uses real*16 math
c

real*8 dx(*),dy(*),dbleq
real*16 qqdmult,dtemp
integer i,incx,incy,ix,iy,m,mp1,n

c
dtemp = 0.0q0
ddot_16 = 0.0d0
if(n.le.0)return

c
ix = 1
iy = 1
if(incx.lt.0)ix = (-n+1)*incx + 1
if(incy.lt.0)iy = (-n+1)*incy + 1

c
do i = 1,n
dtemp = dtemp + qqdmult(dx(ix),dy(iy))
ix = ix + incx
iy = iy + incy
enddo

c
ddot_16 = dbleq(dtemp)
return
end

where qqdmult multiplies two real*8 numbers in real*16 and saves the result in
real*16.

real*16 function qqdmult(a,b)
implicit real*16(a-h,o-z)

c
c multiplies two real*8 numbers in real*16
c saves in real*16
c built 26 May 2003 by Houston H. Stokes
c

real*8 a,b
external qdble

c
qqdmult=qdble(a)*qdble(b)
return
end

As will be shown later ddot 16 allows the inner product summation and multi-
plication to be done in real*16 and returns the answer in real*8, which improves
accuracy every place that DDOT is called. The routine dqddot is an IMSL [20] routine
that does the same thing as ddot 16 except faster since it uses the IMSL routines
DQINI, DQADD, DQMUL and DQSTO, which operate using real*8 math but give real*16
accuracy. When 64 bit hardware and compilers are available, the reverse will most

18 H.H. Stokes / The sensitivity of econometric results to alternative implementations

likely be true. The multiplication calculation in ddot 16 could be replaced with
inline code if qqdmult(dx(ix),dy(iy)) was replaced by qdble(dx(ix))*qdble(dy(iy)).

The reason this was not done was to experiment with and isolate real*8 to real*16
conversion in one routine, qdble which is listed next:

real*16 function qdble(x)
c

function to convert real*8 to real*16
c

real*8 x
real*16 y
call r8tor16(x,y)
qdble=y
return
end
subroutine r8tor16(x,y)
real*8 x
real*16 y

c
c real*8 to real*16 conversion since no fortran
c function.
c

y=x
c

return
end

Real*16 math accuracy can be enhanced by use of routines QVXADD, QVXMUL and
QVXSTO, which were developed based on logic from no longer supported IMSL code
from the 1980’s. The routine LGCOPY is similar to the BLAS routine DCOPY, except
that logical*1 data is copied to zero out portions of the real*16 number to perform
the split.

subroutine qvxadd(a,acc)
c
c purpose - extended precision add - better than real*16
c
c usage - call qvxadd (a,acc)
c
c arguments a - real*16 number to be added to the
c accumulator. (input)
c acc - accumulator. (input and output)
c acc is a real*16 vector of length
c 2. on output, acc contains the sum of

input acc and a.
c

real*16 a,acc(2),x,y,z,zz
c

x = acc(1)
y = a
if (qabs(acc(1)).ge.qabs(a)) go to 1

H.H. Stokes / The sensitivity of econometric results to alternative implementations 19

x = a
y = acc(1)

c compute z+zz = acc(1)+a exactly
1 z = x+y

zz = (x-z)+y
c compute zz+acc(2) using real*16 math

zz = zz+acc(2)
c compute acc(1)+acc(2) = z+zz exactly

acc(1) = z+zz
acc(2) = (z-acc(1))+zz
return
end
subroutine qvxmul(a,b,acc)

c
c purpose - real*16 extended precision (better than
c real*16 multiply)
c
c usage - call qvxmul (a,b,acc)
c
c arguments a - input real*16 number
c b - input real*16 number
c acc - accumulator. (input and output)
c acc is a real*16 vector of length
c 2. on output, acc contains the sum of
c input acc and a*b.
c
c logic changed 1 October 2004 by Houston H. Stokes for real*16
c

real*16 a,b,acc(2),x,ha,ta,hb,tb
logical lx(16)
equivalence (x,lx(1))

c
c logic split a = ha+ta
c b = hb+tb
c compute ha*hb,ha*tb,ta*hb, and ta*tb
c and call qvxadd to accumulate the sum
c

x=a
ha=0.0q+00
call lgcopy(8,.true.,0,lx,1)
ha=x
ta=a-ha
x=b
hb=0.0q+00
call lgcopy(8,.true.,0,lx,1)
hb=x
tb=b-hb

c
x = ta*tb
call qvxadd(x,acc)
x = ha*tb
call qvxadd(x,acc)
x = ta*hb

20 H.H. Stokes / The sensitivity of econometric results to alternative implementations

call qvxadd(x,acc)
x = ha*hb
call qvxadd(x,acc)
return
end
subroutine qvxsto(acc,d)

c
c routine built by Houston H. Stokes
c purpose - real*16 store. (Better than real*16)
c
c usage - call qvxsto(acc,d)
c
c arguments acc - accumulator. (input)
c acc is a real*16 vector of length
c 2. acc is assumed to be the result of
c calling qvxadd or qvxmul to perform extended
c precision operations.
c d - real*16 scalar. (output)
c on output, d contains a double precision
c approximation to the value of the extended
c precision accumulator.
c

real*16 acc(2),d
c first executable statement

d = acc(1)+acc(2)
return
end

While enhancements to BLAS routines to provide additional accuracy are a rela-
tively easy way to increase the accuracy of currently running code developed using
real*8 and complex*16, the development of real*16 and complex*32 versions of key
routines in EISPACK [29] and LINPACK [5] will be shown to provide further, and
in many cases needed, accuracy for difficult problems.

2.3. Effect of data storage in memory and data reading

While most modern software systems save data in real*8, there are exceptions
thatsave data in real*4 by default.13 A related problem is data base systems that save
transformed data in real*4 and thus negatively impact being able to perform accurate
calculation of some statistical procedures.14 With 64 bit hardware computing on the
horizon and 64 bit software-based computing possible, it is important to seethe effect

13McCullough [17, p. 152] discussed problems of real*4 data storage. He notes, “. . . users should
also be aware that single-precision storage can have an adverse effect on accuracy, even when the input
data are single-precision.” SCA is an example of a software system that saves data in real*4 by default,
although real*8 storage is also possible. The effect of real*4 data storage on accuracy is studied later with
the Pontius data set.

14Since the B34S allows data to be transformed to real*4 and then recopied back to real*8, it is possible
to simulate the effect of real*4 databanks.

H.H. Stokes / The sensitivity of econometric results to alternative implementations 21

of data storage on accuracy.15 While the usual approach is just to boost accuracy
for a calculation, evidence shown later in this paper suggests that much is lost by
this approach. For difficult problems, more accuracy can be obtained if data are
read directly into a real*16 variable. This will be shown later using the StRD [27]
Filippelli data set. While the Filippelli OLS data set, if read into a real*8 variable,
will not solve with a Cholesky factorization, if the data are loaded into a real*16
variable, more accuracy than the QR on real*8 data is obtained with a Cholesky
factorization.16 However, if the same data were directly loaded in real*16, then
many more accurate digits are obtained. This finding, which will be discussed in
some detail later, suggests a number of important things. First, a data copy into
real*16 from real*8 can help but is no substitute for a direct read into real*16. While
it could be said that the Filippelli data set is known to cause problems and that the
findings are not relevant for most problems, it remains interesting to see what happens
when one can see a difference.

2.4. Accuracy issues involving the variance

To test if the McCullough-Vinod [14] formula was actually needed to calculate
the variance, the StRD Numerical-Accuracy-4 data set, which provides the “stiffest”
variance calculation, was selected. Here the sample mean, standard deviation and
autocorrelation are known exactly and are 10000000.2, 0.1 and −0.999, respectively.
To measure the number of significant digits in the answer, McCullough [16] suggests
using the log relative error, defined as LRE = − log10(|x − c|/|c| for c �= 0 and
− log10(|x|) otherwise, where x = the answer obtained and c = the “correct” or target
answer. Using the standard B34S17 matrix command formulas for the mean, standard
deviation and auto correlation, the answers obtained for the above problem were, re-
spectively, 10000000.20000000, 0.1000000005587935 and −0.9989999999813732.
These give LRE values of 15.0, 8.25 and 10.73 respectively. 18 The test data
set consists of 1001 observations of three data values (10000000.2, 10000000.1,
10000000.3). A number of tests were run, using first the default B34S variance

15Fortran 77 has had the data types REAL*16 and COMPLEX*32 for many years. The implementation
of arithmetic using these data precisions was software-based and slow. With 64 bit machines available,
these calculations will substantially speed up in the future as hardware solutions will be implemented.

16The QR using real*16 data is still more accurate, although for data converted from real*8 to real*16,
both the Cholesky and the QR will have the same degree of accuracy. The Filippelli problem, when
estimated with RATS [4] version 6.03, gives no indication that there is a problem except producing some
0.0 coefficients. If the same problem is run with the SAS ORTHOREG procedure, no correct coefficients
are produced and β9 is set to missing. Table 10, discussed in Section 4, documents a real*16 Filippelli
benchmark developed with variable precision arithmetic.

17All calculations have been done using the B34S MATRIX command unless otherwise stated.
18The error of the autocorrelation was −0.1862676679564856E-10, which is clearly acceptable for

most work. The same can be said for the standard deviation calculation. As will be shown later, the LRE
value can be increased to 26.31 if data are read into real*16 and real*16 math is used. McCullough [18,
p. 17] obtained LRE values of 15, 8.3 and 15 for real*8 data.

22 H.H. Stokes / The sensitivity of econometric results to alternative implementations

Table 2
The effect of formulas and data precision on standard deviation calculation

Experiment # 1 No Accuracy improvements for Case B. Real*8 Data
Case A 0.1000000005587935 LRE 8.25
Case B 0.1000000005588410 LRE 8.25

Experiment # 2 Accuracy improvements for Case B. Real*8 Data
Case B 0.1000000005587935 LRE 8.25

Experiment # 3 Real*8 to Real*16 Data. No accuracy improvements
Case A 0.10000000055879354477361958556452 LRE 8.25
Case B 0.10000000055879354477361958556452 LRE 8.25

Experiment # 4 Data read directly into Real*16
Case A 0.10000000000000000000000000048468 LRE 26.31
Case B 0.10000000000000000000000000048468 LRE 26.31

Experiment # 5 Real 8 to Real*16 Data. Real32 accuracy on
+++++++++++ converted real*16 ++++++++++++++++
Case A 0.10000000055879354477361958556452 LRE 8.25
Case B 0.10000000055879354477361958556452 LRE 8.25 +++++++++++

Experiment # 6 Data read directly into real*16. Real32 on.
Case A 0.10000000000000000000000000048468 LRE 26.31
Case B 0.10000000000000000000000000048468 LRE 26.31

Case A uses the high accuracy formula with high accuracy enhancements.
Case B uses the standard formula as listed in footnote 9.
LRE is the McCullough [16] accuracy measure. The exact answer is .1.

routine that consists of both the McCullough-Vinod formula and high accuracy sum-
mation and product enhancements and, second, the traditional formula (programmed
with the B34S matrix command language), with and without accuracy enhancements.
Both approaches were run on real*8 data, real*8 data copied to real*16 and data read
directly into real*16. The results are listed in Table 2.

In experiment # 1 for real*8 data the LRE was the same for both approaches
(8.25) but the answers were slightly different. In experiment # 2 BLAS accuracy
enhancements are turned on and both approaches obtain the same answer. This
suggests that the real*8 accuracy enhancements obviate the need for the “correct”
variance formula discussed in footnote 11.

Experiment # 3 copies the data to real*16 from real*8, makes all calculations in
real*16 and observes no accuracy gain. Experiment # 4, however, reads the data
directly into real*16 before making calculations in real*16 and obtains a LRE of
26.31, a substantial gain. The importance of this is that the data storage precision
makes a difference. If calculations are desired in real*16, for difficult problems it is
imperative that accuracy not be lost in the initial data read, where truncation errors
occur due to inexact binary representation, especially for “stiff” data. While it is
known that this problem may occur, the above example illustrates the nature of the
loss. Reading into real*16 directly makes a major difference. Experiments # 5 and #
6 test if accuracy enhancements to real*16 calculations, using QVXADD, QVXMUL and
QVXSTO, will make a difference. The finding is that for this problem it does not make
a difference. Variable precision arithmetic calculation, not shown in the table, using
60 digits of accuracy produces the exact answer.

H.H. Stokes / The sensitivity of econometric results to alternative implementations 23

2.5. Speed issues for the SVD

Press et al. [21] advise use of the QR or SVD but remarks that there are speed
disadvantages of the SVD. While results presented in the next section suggest that
there can be some accuracy losses using the SVD, this section will address the speed
issues of two SVD candidates using two types of CPU. In test # 1, reported on
the top of Table 3, the results suggest that up to a matrix of order 400, LINPACK
is faster, while for larger systems LAPACK runs more quickly. These tests were
run on a Dell Latitude running a 1.1 Gh processor and Windows 2000. Since
most problems involving OLS are for matrices of order less than 350, the choice
appeared to be to use LINPACK, based on speed of calculation for these matrices
and LAPACK for systems bigger than order 350. However, when the above tests
are run on a Dell 650 workstation running a 3.05 Xeon chip and Windows XP, there
appears to be no speed gain if LAPACK is used for large systems. Due to the chip
design, there were measured performance gains for both routines. 19 For example,
when we compare 600-order systems to 200-order systems on the Dell Latitude, the
time increased 84.6 fold (27.96/0.3305) for LINPACK and 52.3 (20.43/0.3906) for
LAPACK. For tests using the Xeon chip, these numbers were 38.1 (4.766/0.1250)
and 37.7 (6.484/0.1719), respectively. For LAPACK the optimum workspace was set
by the routine on the first call. For all tests the singular values Θ, the first K rows
of U and the full V was calculated. The square matrices used were built using the
IMSL [20] random normal generator. In the next section the two SVD code choices
are tested for accuracy differences.

3. Results for OLS models

3.1. Filippelli polynomial data set

To measure the effects of data precision and calculation method on accuracy
requires a number of different test data sets. The first problem attempted was
the StRD [27] Filippelli data set, which contains 82 observations on a polynomial
model of the form y = β0 +

∑10
i=1 βix

i + e where x ranges from −3.13200249 to
−8.781464495 and x10 ranges from 90,828.258 to 2,726,901,792.451598. Answers
to 15 digits are supplied by StRD.20 Table 4 reports 15 experiments involving various

19To test if this finding was due to Windows 2000 vs XP, the above exercise was run on a Dell Xeon
workstation running Red Hat Linux and having 2.5 Gh chips. Results comparable to the Xeon results
reported in Table 3 were obtained. This suggests it is multi-thread chip design that is causing the difference.
All tests were run using Lahey version 7. Fortran compilers. The developers of LAPACK [1] have noticed
similar CPU design-sensitive effects. Their results, done in 1992, did not include modern Intel chips.

20StRD documentation reports that while 15 digits are given, due to truncation, the answers are certified
up to the last digit. To summarize accuracy, the average LRE value is given for each model. Moler [19,

24 H.H. Stokes / The sensitivity of econometric results to alternative implementations

ways to estimate the model. The LINPACK Cholesky routines and general matrix
routines detect rank problems and will not solve the problem if the data are not
converted to real*16. The QR approach obtains an average LRE of 7.306, 7.415
and 8.368 on the coefficients, SE and residual sum of squares. The exact numbers
obtained are listed in Table 5. If the accuracy improvements for the BLAS routines
suggested in section 2.2 are enabled, these LRE numbers jump to 8.118, 8.098 and
9.803, respectively. Note that both accuracy improvements result in the same gain.
Experiments # 4 and # 5 first copy the data that have been first read into real*8 into
a real*16 variable and attempt estimation with a Cholesky and a QR approach. The
LRE’s are the same for both approaches (7.925,8.708, 8.167). This experiment shows
the effect of calculation precision and at first would lead one to believe that there is
little gain obtained using real*16 calculation except for the fact that the Cholesky
condition is not seen as 0.0. However, this interpretation would be premature without
checking for data base precision effects (i. e., at what precision was the data initially
read), which we do below.

Experiments 6–12 test various combinations of calculation precision and routine
selection. In Experiment # 6 we use the LINPACLK SVD routines on real*8 data.
The results are poor (LRE numbers of 2.195, 2.132 and 4.039). 21 When the accuracy
improvements are enabled, (experiment 7 and 8), there is a slight loss of accuracy
on the coefficients to 1.901 but a slight gain on the SE to 2.431. However, when
the real*8 data are copied to real*16 in experiment 9, the SVD LRE numbers jump
to 7.924, 8.708 and 8.167, respectively, which are similar to what was found in
experiments 4 and 5 and show clearly the effect of calculation precision conditional
on data reading into real*8 before the data are moved to real*16. These results are
similar to those in the real*16 Cholesky experiment 4 and the real*16 QR experiment
5.

Experiments 10–12 study the effect of using LAPACK’s SVD routine in place of
LINPACK. For experiment 10, the coefficient LRE jumps to 7.490, which is quite
good and in fact beats the QR LRE reported for experiment 1. This value is far
better than the LINPACK LRE of 2.195.22 However, the LRE of the SE is poor with

Chapter 5] discussed this data set in problem 5.10 noting that this problem is “controversial” and that there
are “several opinions about whether or not this is a reasonable problem.” There is no disagreement over
the fact that this is a hard problem and thus makes an excellent candidate for stressing a solution method
or software implementation. McCullough [17] reports no solution for SAS or SPSS but LRE values of
7.1, 7.0 and 7.8 for SPLUS for coefficients, SE and r, respectively. These LRE values are in line with what
one would expect with a QR solution using real*8 data. Somewhat better results are reported for B34S in
Table 4.

21The author has used the LINPACK code since 1979. These results were not expected and seem to be
related to the extreme values in the X matrix in the Filippelli data. When real*16 is used, accuracy of the
LINPACK SVD routine improves.

22McCullough [18] Used LAPACK QR and SVD routines to estimate the coefficients of the Filippelli
data finding that “QR generally returns more accurate digits than SVD.” The LRE values found were 7.4
and 6.3 respectively. For S-PLUS he found 8.4 and 5.8, respectively, where the underlying routines were
not known.

H.H. Stokes / The sensitivity of econometric results to alternative implementations 25

Table 3
Speed differences of the SVD calculation by CPU type and matrix size

Obs Order Linpack Lapack Ratio

Test 1 Relative Speed of Linpack/LAPACK SVD on Dell Latitude 1.1 Gh
1 150.0 0.1302 0.1302 1.000
2 200.0 0.3305 0.3906 0.8462
3 250.0 0.8112 1.001 0.8100
4 300.0 1.793 2.063 0.8689
5 350.0 3.405 3.555 0.9577
6 400.0 5.798 5.778 1.003
7 450.0 8.863 8.132 1.090
8 500.0 12.60 12.30 1.024
9 550.0 21.10 15.49 1.362
10 600.0 27.96 20.43 1.369

Test 2 Relative Speed of Linpack/LAPACK SVD on DELL 650 3.05 Gh Xeon
1 150.0 0.4688E-01 0.6250E-01 0.7500
2 200.0 0.1250 0.1719 0.7273
3 250.0 0.2344 0.3750 0.6250
4 300.0 0.5312 0.7344 0.7234
5 350.0 0.8906 1.203 0.7403
6 400.0 1.359 1.906 0.7131
7 450.0 1.969 2.594 0.7590
8 500.0 2.703 3.641 0.7425
9 550.0 3.656 4.781 0.7647
10 600.0 4.766 6.484 0.7349

The LINPACK SVD routine used was DSVDC, while for LAPACK DGESVD was used.

a LRE of 1.910, which is less than that found with the LINPACK code of 2.132.
The LRE of e′e of 1.606 is also less than the LINPACK LRE of 3.258. Since the
SE requires knowledge of (X ′X)−1, calculated as (X ′X)−1 = V Θ−2V ′, extreme
values along the diagonal of Θ may be causing errors when forming Θ −2. However,
this possibility does not explain the poor performance of the residual sum of squares
LRE of 1.606.23 The reason may be related to the fact that the data set has such high
x10 values that minor coefficient differences will result in substantial changes in the
relative residual sum of squares.

Experiments 13–15 first load the data in real*16 and proceed to the same routines
as used for experiments 4–6. Here we see LRE numbers of 14.68 14.99 and 15.00
for the Cholesky experiment and 14.79, 14.96 15.00 for the QR experiment which
is the same as SVD (LINPACK). These are close to perfect answers. Table 5 lists
the coefficients obtained for experiment 1, which used real*8 data while Table 6
lists the exact coefficients obtained for the QR using data read directly into real*16.
Experiments 13–15 show gain from reading the Filippelli data set in real*16. Since
all there experiments produced similar LRE values, it suggests that if the data are
read with enough precision, the results are less sensitive to the estimation method.

23The sum of squares was tested against the published value of 0.795851382172941E-03. The LAPACK
SVD routine obtained 0.8155689538070673E-03.

26 H.H. Stokes / The sensitivity of econometric results to alternative implementations

Table 4
LRE for various approaches to an OLS model of the Filippelli data

Experiment Type Coef SE RSS LE

Various options of real*8 data
1 QR 7.306 7.415 8.368
2 ACC 1 8.118 8.098 9.803
3 ACC 2 8.118 8.098 9.803
4 R16 CHOL 7.924 8.708 8.167
5 R16 QR 7.924 8.708 8.167
6 SVD 2.195 2.132 4.039
7 SVD ACC1 1.901 2.431 3.258
8 SVD ACC2 1.901 2.431 3.258
9 SVD R16 7.924 8.708 8.167

10 SVD LAPK 7.490 1.910 1.606
11 SVD2ACC1 7.490 1.910 1.606
12 SVD2ACC2 7.490 1.910 1.606

Various Options using Data read directly in real*16
13 R16 CHOL 14.68 14.99 15.00
14 R16 QR 14.79 14.96 15.00
15 R16 SVD 14.79 14.96 15.00

Experiments 4, 5 and 9 involve reading data first into real*8 and then converting the data to
real*16. Experiments 1–3, 6–8 and 10–12 involve real*8 data. Experiments 13–15 use data
read directly into real*16. See Section 2.1 for a detailed discussion of the methods used,
the data and the software and settings involved. The coefficients obtained for experiment
1 and 14 are listed in Tables 5 and 6.

This finding has important implications for data base design and is similar to what
was found with the variance calculations in Section 2. The next task is to study less
extreme (stiff) data sets and observe the results.

3.2. Analysis of the residual sum of squares of the Gas Furnace data

The Box-Jenkins [3] Gas Furnace data have been widely studied and modeled and
are close in difficulty to what are found in many applied models in time series. While
“correct” agreed upon answers are not available, it is possible to study the effect
on the residual sum of squares using 11 approaches reported in Table 7. 24 Since
OLS minimizes the sum of squared errors, a “better” answer is one with a smaller
e′e. Using this criteria, the LINPACK general matrix solver DGECO, Experiment
3, is “best” followed closely by the LAPACK general matrix solver, Experiment
4, and the LINPACK SVD routine, Experiment 10. Experiments 5 and 6 use the
LAPACK general matrix solver that allows refinement and, in the case of Experiment
6 refinement and equilibration. These approaches did not do as well in determining
a minimum e′e and were substantially more expensive in terms of computer time.
Of interest is why Experiment 1 and Experiment 8 did not produce the same answer

24Since this data set does not have the rank problems found with the Filippelli data, it is possible to
attempt a number of alternative procedures. Not all these procedures should be used.

H.H. Stokes / The sensitivity of econometric results to alternative implementations 27

Table 5
Coefficients and SE estimated using QR on Real*8 Filippelli data

Test value Value obtained LRE

Coef 1 −2772.179591933420 −2772.179723094652 7.33
Coef 2 −2316.371081608930 −2316.371192269638 7.32
Coef 3 −1127.973940983720 −1127.973995395338 7.32
Coef 4 −354.4782337033490 −354.4782509735776 7.31
Coef 5 −75.12420173937571 −75.12420543777237 7.31
Coef 6 −10.87531803553430 −10.87531857690271 7.30
Coef 7 −1.062214985889470 −1.062215039398714 7.30
Coef 8 −0.6701911545934081E-01 −0.6701911887876555E-01 7.29
Coef 9 −0.2467810782754790E-02 −0.2467810910390330E-02 7.29
Coef 10 −0.4029625250804040E-04 −0.4029625462234867E-04 7.28
Coef 11 −1467.489614229800 −1467.489683023960 7.33

Mean LRE 7.306448565286121
Variance LRE 2.587670394878226E-04
Minimum LRE 7.280096349919187
Maximum LRE 7.329023461850447

SE 1 559.7798654749500 559.7798867059487 7.42
SE 2 466.4775721277960 466.4775900975754 7.41
SE 3 227.2042744777510 227.2042833290517 7.41
SE 4 71.64786608759270 71.64786889794284 7.41
SE 5 15.28971787474000 15.28971847592676 7.41
SE 6 2.236911598160330 2.236911685945726 7.41
SE 7 0.2216243219342270 0.2216243305780890 7.41
SE 8 0.1423637631547240E-01 0.1423637686503493E-01 7.41
SE 9 0.5356174088898210E-03 0.5356174292732132E-03 7.42
SE 10 0.8966328373738681E-05 0.8966328708850490E-05 7.43
SE 11 298.0845309955370 298.0845420801842 7.43

Mean LRE 7.414701487211084
Variance LRE 7.386168559949404E-05
Minimum LRE 7.405390067654106
Maximum LRE 7.429617565744895

Residual sum of squares:
RSS 0.7958513821729410E-03 0.7958513787598208E-03 8.37

Test values are reported on the left-hand side. LRE = log relative error. The coefficients report experiment # 1 from
Table 4. The same LINPACK QR routine was modified by Stokes [31,32] to run for real*16 data. Results for this
experiment are shown in Table 6.

since they both used the LINPACK Cholesky routines. The answer relates to the way
the coefficients are calculated. In the former case the Cholesky R is used to obtain
the coefficients without explicitly forming (X ′X)−1 using the LINPACK routine
DPOSL, while in the latter case (X ′X)−1 is formed from R using DPODI. In general,
the answers are very close for this exercise.

3.3. Pontius and Eberhardt data

The StRD Pontius data are classified as of a lower level of difficulty, although
more challenging than the gas furnace data studied in the prior section. The Pontius

28 H.H. Stokes / The sensitivity of econometric results to alternative implementations

Table 6
Coefficients estimated with QR using Real*16 Filippelli data

LRE

Coefficients Using QR on Data Loaded into Real*16
1. −2772.1795919334239280284475535721 14.85
2. −2316.3710816089307588219679140978 15.00
3. −1127.9739409837156985716700141998 14.42
4. −354.47823370334877161073848496470 15.00
5. −75.124201739375713890522075522684 15.00
6. −10.875318035534251085281081177145 14.35
7. −1.0622149858894676645966112202356 14.66
8. −0.67019115459340837592673412281191E-01 15.00
9. −0.24678107827547865084085445245647E-02 14.85
10. −0.40296252508040367129713154870917E-04 15.00
11. −1467.4896142297958822878485135961 14.55

Mean LRE 14.788490320266543980835382276091684
Variance LRE 6.3569618908829012635712782954099325E-0002
Minimum LRE 14.347002403969724322813759016211991
Maximum LRE 15.000000000000000000000000000000000

SE Using QR on DATA Loaded into Real*16
1. 559.77986547494987457477254797527 15.00
2. 466.47757212779645269310982974610 15.00
3. 227.20427447775131062939817526228 14.86
4. 71.647866087592737261665720850718 15.00
5. 15.289717874740006503075678978592 15.00
6. 2.2369115981603327555186234039771 14.91
7. 0.22162432193422740206612983379340 14.74
8. 0.14236376315472394891823309147959E-01 15.00
9. 0.53561740888982093625865193118466E-03 15.00
10. 0.89663283737386822210041526987951E-05 15.00
11. 298.08453099553698520055234224439 15.00

Mean LRE 14.955903576675283545444986642213045
Variance LRE 7.2174779096858864768608287934814669E-0003
Minimum LRE 14.741319930323011772906976043000329
Maximum LRE 15.000000000000000000000000000000000

Residual sum of squares
0.79585138217294058848463068814293E-03 15.00

LRE = log relative error. This is experiment # 14 from Table 4. LINPACK QR routine modified by
Stokes [31,32] to run with real*16 data. For this experiment the data was read directly into real*16.

data consists of 40 observations of a model of the form y = β 0 + β1x + β2x
2 for a

model which is almost a perfect fit. The eigenvalues of (X ′X), as calculated by the
EISPACK routine RG, were 0.8109E+13, 0.7317E+27, 3.613, giving a condition
estimate that tripped the condition tolerance in the LINPACK LU and Cholesky
routines for both real*8 and real*4 data. Calculations were “forced” by ignoring
this check.25 Results are reported for a number of experiments in Table 8 that

25The same data was estimated in Windows RATS [4] version 6.0. While the reported coefficients
agreed with the benchmark for 11, 11 and 14 digits, respectively, RATS unexpectedly produced a SE of

H.H. Stokes / The sensitivity of econometric results to alternative implementations 29

Table 7
Residual sum of squares on a VAR model of order 6 – Gas Furnace data

Residual Sum of Squares for various methods
1. OLSQ using Linpack Chosleky -- solving from R 16.13858295915815
2. OLSQ using LINPACK QR 16.13858295915821
3. OLSQ using LINPACK DGECO 16.13858295915803
4. OLSQ using LAPACK DGETRE-DGECON-DGETRI 16.13858295915806
5. OLSQ using LAPACK DGESVX 16.13858295935751
6. OLSQ using LAPACK DGESVX with equilibration 16.13858295963500
7. OLSQ using LAPACK DPOTRF-DPOCON-DPTTRI 16.13858295915812
8. OLSQ using LINPACK DPOCO-DPODI 16.13858295915811
9. OLSQ using LINPACK DSICO-DSIDI 16.13858295915814
10. OLSQ using SVD Linpack 16.13858295915808
11. OLSQ using SVD Lapack 16.13858295915810

Model estimated was gasout=f(gasout{1 to 6}, gasin{1 to 6}). Data from Box-Jenkins [3]. Data studied in Stokes [32].
Experiment 1 solves for β using Cholesky R directly.
Experiments 3–9 form (X′X)−1.

vary precision, method of calculation and degree of Fortran optimization for real*4
data. The base method was the QR for real*8 data which gives a LRE = 13.54
for β. When accuracy was enabled the LRE for the SE and e ′e increased slightly
from 12.39 to 12.51 and 12.09 to 12.21 respectively in experiments 1 and 2. The
LINPACK SVD produced a LRE of 13.92, 13.92 and 13.53 for the coefficient, the
SE and e′e, respectively, while for LAPACK these were 13.48, 12.74 and 12.93,
respectively, in Experiments 3 and 4. Here, using accuracy as a criteria, LINPACK
edged LAPACK. Since in the Filippelli data set the reverse was found, there appears
to be no “best” SVD routine for all cases. In addition to accuracy, there are other
aspects of the selection process that include relative speed of execution (tested in
Table 3 and found to be a function of the size of the problem and computer chip) and
memory requirements that are not tested here since they are published. 26

Experiments 5–8 show forced LINPACK LU and Cholesky models for real*8
data. In Experiments 7–8, added accuracy in the accumulators was enabled. Slight
accuracy gains were observed, especially in the RSS calculation where the LRE
jumped from 12.77 & 12.73 to 13.23 and 13.39, respectively. What is interesting
is that in this case, even though the condition of (X ′X) was large, the LU and
Cholesky approaches were able to get reasonable answers. The LINPACK condition
check appears to be conservative since in the usual case the software would not
attempt the solution of this problem.

0.0 and a t of 0.0 for the β2 term. The “certified” coefficients and standard errors are:
β0 =0.673565789473684E-03 0.107938612033077E-03
β1 =0.732059160401003E-06 0.157817399981659E-09
β2 =-0.316081871345029E-14 0.486652849992036E-16
which produce a t for β2 of −64.95, not zero.

26For LAPACK the memory was set to the suggested amount from the first call to the routine. Experi-
mentation with alternative LAPACK memory, possible with the B34S system implementation of LAPACK,
was not attempted for his paper.

30 H.H. Stokes / The sensitivity of econometric results to alternative implementations

Table 8
LRE for various estimates of coef, SE and RSS of Pontius data

Method Coef SE RSS

Real*8 Data
1. QR 13.54 12.39 12.09
2. QR AC 13.52 12.51 12.21
3. SVD-LINPACK 13.92 13.92 13.53
4. SVD LAPACK 13.48 12.74 12.93
5. LU-Forced 12.61 13.02 12.77
6. Chol-Forced 12.11 13.00 12.73
7. LU-Forced AC 12.77 13.61 13.23
8. Chol-Forced AC 12.17 13.63 13.39

Real*4 Data Optimization = 1
9. QR 5.36 6.01 5.65
10. QR AC 5.36 4.37 4.06
11. LU-Forced 3.93 5.27 5.36
12. Chol-Forced 3.97 3.36 3.06
13. LU-Forced AC 3.95 5.30 4.78
14. Chol-Forced AC 4.01 3.32 3.02

Real*4 Data Optimization = 0
9. QR 5.36 4.21 3.91
10. QR AC 5.36 4.37 4.06
11. LU Forced 4.31 4.80 4.45
12. Chol Forced 4.48 4.51 4.26
13. LU Forced AC 3.95 5.30 4.78
14. Chol Forced AC 4.16 3.79 3.48

All data were initially read in real*8. For real*4 results data were then converted
to real*4. Forced means that the LINPACK condition check has been bypassed for
testing purposes. All reported LRE values are for the means. All real*4 tests have
been done with LINPACK routines. Real*4 accumulators have not been enabled
in cases where AC is not added to the method name.

Experiments 9–14 concern real*4 data.27 Again, the QR was found to be most
accurate, with scores of 5.36, 6.01 and 5.65 for the coefficients, SE’s and RSS,
respectively. These runs were made with code compiled by Lahey Fortran version
7.10 running opt = 1. When accuracy enhancement was enabled, the LRE for the SE
fell from 6.01 to 4.37. This difference was traced to the fact that the BLAS routine
SDOT is optimized to hold data in registers while the higher accuracy routine SDSDOT
did not optimize to the same extent. This is shown when the same calculation was
done with opt=0. the QR SE accuracy was 4.21 and 4.37 for non-accuracy and
accuracy-enabled code respectively. Higher accuracy was observed for opt=1 LU-
forced of 5.27 vs 4.80 for opt=0 calculations. Why the forced Cholesky experiment
seems to run more accurately at opt=0 than opt=1 (see Experiment 12) is not clear.

27Data was first read in real*8. Then the B34S routine RND() first checked for maximum and minimum
allowable real*4 size, using the Fortran functions HUGH() and TINY(). Next, the real*8 data was written
to a buffer, using g25.16, and re-read into real*4, using the format g25.16. This approach gives a close
approximation to having read the data directly into real*4. Use of the Fortran function sngl() can be
dangerous in that, among other things, range checking is not performed.

H.H. Stokes / The sensitivity of econometric results to alternative implementations 31

What seems to be the case is that the level of optimization and its resulting changes
in registers seems to make a detectable difference only with real*4 precision data.
A strong case can be made not to use this precision for this problem. When real*8
calculations are used, these knife edge type differences are not observed.

The Eberhardt data consist of 11 observations of a one input model y = β 1x.
The level of difficulty is rated as average. Results are shown in Table 9. Here the
Cholesky, the LINPACK SVD and the LAPACK SVD all produce 100% identical
LRE values of 14.72, 15.00 and 14.91 respectively. For the QR the Coefficient LRE
was 14.72 while the SE and residual LRE’s were marginally less at 14.40 and 14.05.
Here again the methods being considered run very close together.

The above results suggest that in certain problems that have a high degree of
multicollinearity, the results are sensitive to the level of precision of the calculation
as well as the method of the calculation. A challenging example was the Filippelli
polynomial data set which was discussed earlier. However, the discussion was not
complete because the real*16 QR results were only compared to the 15-digit “official”
benchmark, and not a benchmark with more digits. Since real*16 will give more
than 15 digits of accuracy, an important final task for the next section is to extend the
Filippelli benchmark, using variable precision arithmetic to benchmark the accuracy
of the real*16 results obtained.

4. Variable precision results

The variable precision library developed by Smith [30] was implemented in the
B34S to extend the Filippelli benchmark and thus fully test the true accuracy of the
reported real*16 results. The LINPACK LU inversion routines DGECO, DGEFA and
DGEDI were rewritten to allow variable precision calculations. What was formerly
a real*8 variable became a 328 element real*8 vector. Simple statements, such as
A=A+B*C, had to be individually coded, using a customized pointer routine, IVPAADD(

) that would address the correct element to pass to a lower level routine to make the
calculation. A simple example shows how this is done:

c
c if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k))
c

if(vpa_logic(kindr,
* z(ivpaadd(kindr,k,1,k,1)),’ne’, vpa_work(i_zero)))then
call vpa_mul(kindr,vpa_work(i_mone), z(ivpaadd(kindr,k,1,k,1)),

* vpa_work(iwork(4)))
call vpa_func_2(kindr,’sign’, vpa_work(i_ek),

* vpa_work(iwork(4)),
* vpa_work(iwork(5)))
call vpa_equal(kindr,vpa_work(iwork(5)), vpa_work(i_ek))
endif

32 H.H. Stokes / The sensitivity of econometric results to alternative implementations

Table 9
LRE for QR, cholesky, SVD LINPACK and LA-
PACK for Eberhardt data

Method COEF SE RSS

QR 14.72 14.40 14.05
Chol 14.72 15.00 14.91
SVD-LINPACK 14.72 15.00 14.91
SVD-LAPACK 14.72 15.00 14.91

All data read in real*8.

vpa work() is a 328 by 20 work array. The line z(ivpadd(kindr,k,1,k,1) addresses
the kth element of Z, which is 328 by k, and compares it to a constant = 0.0
saved in vpa work(i zero). If these two variables are not equal then the three calls
are executed to solve ek = dsign(ek,-z(k)). The first call forms –z(k) and places
it in VPA work(iwork(4)). The variable vpa work(i mone) contains –1.0. Next, the
SIGN function is called and the result placed in VPA work(iwork(5)). Finally a copy
is performed. This simple example shows what is involved to “convert” a real*8
program to do VPA math.

The results can be spectacular.28

Table 10 shows the Filippelli Data set benchmark, an extended printout of the QR
real*16 results and the expanded Filippelli benchmark calculated with VPA data to 40
digits. A ruler listed at the top table is designed to assist the reader in determining at
which digit there is a difference. Consider coefficient # 1. The VPA beta agrees with
the real*16 QR beta up to the 28th digit, which is far beyond the 15 th digit, which
was all that was listed for the “benchmark” which is shown again in Table 10. The
VPA experiment documents that the real*16 calculation is in fact substantially more
accurate than the best real*8 QR, which produced, on average 7 digits, as reported
in Table 5. Recall that the “converted” real*16 results (data converted from real*8
to real*16), reported in Table 4 Experiment 5, had only a marginally better LRE of
7.924 than the real*8 QR results that found the LRE was 7.31. Although in Tables 4
and 6 it was reported that the “true” real*16 QR results (data loaded directly into
real*16), had a LRE value was 14.79, once we had the VPA benchmark for 40 digits,
it was apparent that the LRE was substantially larger. Even calculations of the 10 th

and 11th coefficients, when compared with the VPA data, produced 27 digits of
accuracy. It should be remembered that these impressive results for real*16 are due
to both the accuracy of the calculation and the fact that the data was directly read
into real*16, not converted from real*8 to real*16. As we have shown, the data base

28The job vpainv, in paper 86.mac which is distributed which B34S, illustrates the gains in
accuracy for alternative precision settings. Assuming a matrix X, X*inv(X) produces off diagonal
elements in the order of |.1e-1728|, which is far superior to what can be obtained with real*4, real*8 or
real*16 results which are also shown in the test problem. The B34S VPA implementation allows these
high-accuracy calculations to be mixed with lower precision commands, using real*4, real*8 and real*16,
since data can be moved from one precision to another. This allows experimentation concerning how
sensitive the results are to accuracy settings.

H.H. Stokes / The sensitivity of econometric results to alternative implementations 33

Table 10
VPA alternative estimates of Filippelli data set

10 20 30 40 50
12345678901234567890123456789012345678901234567890

VPA BETA 1 −.2772179591933423928028447556649596044434M+4
Real*16 QR beta −0.2772179591933423928028447553572108500000E+04
Answer for coef −0.2772179591933420E+04
VPA SE 1 .5597798654749498745747725508021651489727M+3
Real*16 QR SE 0.5597798654749498745747725479752748700000E+03
Answer for SE 0.5597798654749500E+03

VPA BETA 2 −.2316371081608930758821967916501044936138M+4
Real*16 QR beta −0.2316371081608930758821967914097820200000E+04
Answer for coef −0.2316371081608930E+04
VPA SE 2 .4664775721277964526931098320484471124838M+3
Real*16 QR SE 0.4664775721277964526931098297461005100000E+03
Answer for SE 0.4664775721277960E+03

VPA BETA 3 −.1127973940983715698571670015266249731414M+4
Real*16 QR beta −0.1127973940983715698571670014199826100000E+04
Answer for coef −0.1127973940983720E+04
VPA SE 3 .2272042744777513106293981763510244738352M+3
Real*16 QR SE 0.2272042744777513106293981752622826700000E+03
Answer for SE 0.2272042744777510E+03

VPA BETA 4 −.3544782337033487716107384852595281875294M+3
Real*16 QR beta −0.3544782337033487716107384849646966900000E+03
Answer for coef −0.3544782337033490E+03
VPA SE 4 .7164786608759273726166572118158443735326M+2
Real*16 QR SE 0.7164786608759273726166572085071780100000E+02
Answer for SE 0.7164786608759270E+02

VPA BETA 5 −.7512420173937571389052207557481187222874M+2
Real*16 QR beta −0.7512420173937571389052207552268365400000E+02
Answer for coef −0.7512420173937570E+02
VPA SE 5 .1528971787474000650307567904607140782062M+2
Real*16 QR SE 0.1528971787474000650307567897859220700000E+02
Answer for SE 0.1528971787474000E+02

VPA BETA 6 −.1087531803553425108528108118290083531722M+2
Real*16 QR beta −0.1087531803553425108528108117714492600000E+02
Answer for coef −0.1087531803553430E+02
VPA SE 6 .2236911598160332755518623413323850745016M+1
Real*16 QR SE 0.2236911598160332755518623403977080500000E+01
Answer for SE 0.2236911598160330E+01

VPA BETA 7 −.1062214985889467664596611220591597363944M+1
Real*16 QR beta −0.1062214985889467664596611220235596600000E+01
Answer for coef −0.1062214985889470E+01
VPA SE 7 .2216243219342274020661298346608897939687M+0
Real*16 QR SE 0.2216243219342274020661298337934033000000E+00
Answer for SE 0.2216243219342270E+00

VPA BETA 8 −.6701911545934083759267341228848844976973M-1
Real*16 QR beta −0.6701911545934083759267341228119136200000E-01
Answer for coef −0.6701911545934080E-01

34 H.H. Stokes / The sensitivity of econometric results to alternative implementations

Table 10, continued

VPA SE 8 .1423637631547239489182330919953278852498M-1
Real*16 QR SE 0.1423637631547239489182330914795936200000E-01
Answer for SE 0.1423637631547240E-01

VPA BETA 9 −.2467810782754786508408544524189188555839M-2
Real*16 QR beta −0.2467810782754786508408544524564670500000E-02
Answer for coef −0.2467810782754790E-02
VPA SE 9 .5356174088898209362586519329555783802279M-3
Real*16 QR SE 0.5356174088898209362586519311846583900000E-03
Answer for SE 0.5356174088898210E-03

VPA BETA 10 −.4029625250804036712971315485276426445821M-4
Real*16 QR beta −0.4029625250804036712971315487091695800000E-04
Answer for coef −0.4029625250804040E-04
VPA SE 10 .8966328373738682221004152725410272047808M-5
Real*16 QR SE 0.8966328373738682221004152698795102200000E-05
Answer for SE 0.8966328373738680E-05

VPA BETA 11 −.1467489614229795882287848515307287127546M+4
Real*16 QR beta −0.1467489614229795882287848513596070800000E+04
Answer for coef −0.1467489614229800E+04
VPA SE 11 .2980845309955369852005523437755166954313M+3
Real*16 QR SE 0.2980845309955369852005523422443903600000E+03
Answer for SE 0.2980845309955370E+03

precision makes a real difference in addition to the precision of the calculation. The
important implication is that the inherent precision of the calculation method will be
no help and in fact may give misleadingly “accurate” results unless the data is read
with sufficient precision.29

Some of the key lesions of this paper are listed in Table 11. The main finding is
the accuracy tradeoff between the precision of the data and the calculation method
used. In all cases, it is important to check for rank problems before proceeding with
a calculation. The less the precision of the data the more appropriate it is to consider
higher accuracy solution methods such as the QR and the SVD approach. 30

29In order to 100% isolate the VPA results from data reading issues, the loading of data into the VPA
array proceeded as follows. The real*16 data was printed to a character*1 array using e50.32. Next,
the VPA string input routine was used to convert this character*1 array into a VPA variable. This way
both real*16 and the VPA results were using the same data. Experiments were also conducted by reading
the data in character form directly into the VPA routines. For this problem both methods of data input
into VPA made no difference since there were relative few digits. In results not reported but available in
paper 86.mac, the Filippelli problem was “extended” by adding x11, · · · , x20 to the right hand side
to make the problem more difficult (stiff). Both the VPA and the native real*16 experiments were run and
both successfully solved the problem, suggesting “reserve” capability to handle a stiff problem.

30While the main trust of the paper has been to show the effect of various factors on the number of
“correct” digits of a calculation, in applied econometric work an important consideration is how many
digits to report. If the government data is known only to k digits, many researchers argue that only k digits
of accuracy should be reported. In many situations, this is appropriate although such a practice makes it
difficult to access the underlying accuracy of the calculation routines used in the software system. Clearly
if variables such as ŷ or ê are to be calculated, all estimated digits should be used to insure

∑
e = 0 etc.

H.H. Stokes / The sensitivity of econometric results to alternative implementations 35

Table 11
Lessons to be learned from this paper

1. The QR method of solving an OLS regression model can provided more digits of accuracy and in
fact may be the only way to successfully solve a “stiff” or multicollinear model.

2. The precision in which data are initially loaded into memory (for example, single precision) impacts
accuracy, even in cases when it is later moved to a higher precision (for example double precision)
for the calculation. This suggests that data should be read into the precision in which the calculation
is made to avoid numeric representation accuracy issues that occur when the precision of the data
is increased.

3. In many cases, accuracy gains can be made by boosting the precision of accumulators such as the
BLAS routines for sum, absolute sum and dot product. Such routines should be used throughout
software systems and will increase the accuracy of the variance and other calculations. It is
desirable to be able to switch on and off such accuracy improvements to test the sensitivity of the
given problem to these changes.

4. Data base design should take into account the needs of the users who may want to read data into
higher-than-usual precision. For data that is not transformed in a data bank, the user should be able
to get all reported digits of precision without rounding (due to numeric representation) loss.

5. The new 64-bit computers will make higher-precision calculations more viable and may prove useful
for the estimation of problems requiring high precision for their successful solution. Real*16 and
complex*32 will not have to be emulated in software by the compilers. These technological changes
on the hardware side suggest that software designers may want to offer greater than double precision
math in future releases of their products.

6. The lower the precision of the data, the more imperative it is to check for rank problems, use
high-quality numeric routines (LAPACK/LINPACK etc.) and utilize inherently higher accuracy
solution methods, such as the QR. For many problems, however, if data are read with sufficient
accuracy, this may not be needed.

7. If data are not initially read with sufficient precision, high-accuracy methods of calculation, such as
the QR, can provide misleadingly “accurate” results that are in fact tainted by numeric representation
issues inherent in the initial data read. This initial data “corruption” cannot be “cured” by any
subsequent increase in data precision. The more “stiff” the problem, the more this becomes an
important consideration.

5. Conclusion

A number of import conclusions emerge from the tests run in this paper. These have
been summarized in Table 11. The first and foremost is that accuracy improvements
can and should be made to production econometric software to insure that accuracy
problems do not unexpectedly occur. The work of McCullough and Vinod [14]
argued that the software developers should use an improved formula to calculate
the variance. While technically correct, results reported in this paper suggest that
if accuracy improvements are made to a number of key BLAS routines, not only
will the accuracy of the variance calculation be improved, but, more importantly,
depending on how widespread BLAS has been implemented in the software, there
will be many other important accuracy improvements. In addition, the user has the
ability to switch back and forth to see the effect of accuracy enhancements on the
results of specific problems.31

31By having the accuracy improvements able to be switched on and off, it is possible to replicate stock
LINPACK and LAPACK results.

36 H.H. Stokes / The sensitivity of econometric results to alternative implementations

Renfro [24,25] has argued for data base standards. An important decision in
implementing a data base is the precision of numbers saved. It has been argued that
since we may only know numbers to a small number of digits, then single precision
storage is sufficient. The problem with this view is that while we may know only a
relatively few digits, if too small a precision is used, these digits get saved in a manner
that precludes their use later at higher precision due to accuracy of saving these few
digits. If the digits were saved in character form, then saving only the number of
digits that are known would be technically correct. This “solution” would not work
if the data had been transformed to a log for example, since more digits would be
needed. Results reported in this paper illustrate that for difficult problems it makes
a difference whether real*16 calculations are being made with data read into real*8
and then converted to real*16 versus data that are read directly into real*16. This
finding suggests that for data saved in real*4, and analyzed in real*8, the problems
may become substantially more acute.

Press [21], McCullough and Vinod [14], Greene [7] and others have argued for the
SVD or QR approach to ordinary least squares estimation since there are accuracy
gains. Results presented here suggest that the QR is quite accurate as is the SVD for
most problems. However, with a stiff OLS problem, such as the Filippelli data set,
even with quality software, such as LINPACK and LAPACK, it can make a difference
what SVD routine is being used. For less difficult data sets, such as Pontius, Eberhardt
and a VAR model on the gas furnace data, the selection of estimation method is less
critical, provided that rank tests are made so that multicollinearity can be detected.
McCullough and Vinod [15] and Stokes [33] suggest that more than one software
system be used for nonlinear estimation. Results presented in this paper suggest that
if the condition of X ′X will not allow estimation with the space-saving Cholesky
approach, the QR or SVD approach should be used. In cases where the SVD method
is selected, it is important to try different software systems. While moving the data
to a higher precision before making the OLS calculation may give the illusion of
assisting in the solution, it will most likely mask the effect of truncation of the data
that occurred when it was initially read at the lower precision. A better choice would
be to read directly into the higher precision.32

Acknowledgements

A number of suggestions received from B. D. McCullough are most appreciated
and have helped strengthen the paper. Charles Renfro initially suggested the topic
and made a large number of suggestions for important improvements that have been
implemented. Some of the ideas of this paper were presented at the American

32If the data was coming from SAS or another system that only supports real*8, the user is trapped if a
move to real*16 is required.

H.H. Stokes / The sensitivity of econometric results to alternative implementations 37

Economic Association Meetings 9 January 2005 in Philadelphia as part of comments
on William Greene’s work in this area. Diana A. Stokes provided editorial assistance.
Any remaining errors are the responsibility of the author.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, S. Ostrouchov and D. Sorenson, LAPACK User’s Guide, Siam, Philadelphia,
1992.

[2] A.J. Barr, J.H. Goodnight, J.P. Sall and J.T. Helwig , A User’s Guide to SAS 76, SAS Institute,
Raleigh NC, 1976.

[3] G.E.P. Box and G. Jenkins, Time Series Analysis, Forecasting and Control, rev. ed. San Francisco:
Holden Day, 1976.

[4] T. Doan, RATS User’s Manual, Evanston, Estima, 1992.
[5] J. Dongarra, C.B. Moler, J.R. Bunch and G.W. Stewart, LINPACK User’s Guide, Siam, Philadelphia,

1979.
[6] J. Doornik and R.J. O’Brien, Numerically stable cointegration analysis, Computational Statistics

and Data Analysis 41 (2002), 185–193.
[7] W.G. William, Econometric Analysis, Prentice Hall, New York, 2000 4th edition and 2005 5th,

edition.
[8] IEEE, Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985 NY Institute

of Electrical and Electronics Engineers, 1985 reprinted in SIGPLAN Notices 22 (1987), 9–25.
[9] K. Judd, Numerical Methods in Economics, MIT Press, Cambridge, MA, 1998.

[10] C. Lawson, R. Hanson, D. Kincard and F. Frogh, Basic linear algebra subprograms for fortran
usage, ACM Transactuions Math Software 5(3) (1979), 308–371.

[11] J. Longley, An appraisal of least squares programs for the electronic computer from the point of
view of the user, Journal of the American Statistical Association 62(319) (1967), 819–841.

[12] MATLAB: The Language of Technical Computing, Mathworks, Natick, Mass 2000.
[13] B.D. McCullough and C.G. Renfro, Some numerical aspects of nonlinear estimation, Journal of

Economic and Social Measurement 26 (2000), 63–77.
[14] B.D. McCullough and H.D. Vinod, The numerical reliability of econometric software, Journal of

Economic Literature 37 (June, 1999), 633–665.
[15] B.D. McCullough and H.D. Vinod, Verifying the solution from a nonlinear solver: A case study,

American Economic Review 93(3) (June, 2003), 873–892.
[16] B.D. McCullough, Econometric software reliability: EViews, LIMDEP, SHAZAM and TSP, Jour-

nal of Applied Econometrics 14 (1999), 191–202.
[17] B.D. McCullough, Assessing the reliability of statistical software: Part II, The American Statistician

53(2) (May, 1999), 149–159.
[18] B.D. McCullough, Experience with the StRD: Application and Interpretation, Computing Science

and Statistics 31 (2000), 16–21.
[19] Cleve, Moler, Numerical Computing with Matlab, Siam, Philadelphia, 2004.
[20] Visual Numerics, IMSL Stat/Library and Math/Library, IMSL, Houston, Texas, 1987.
[21] Press, H. William, B. Flannery, S. Teukolsky and V. William, Numerical Recipes: The Art of

Scientific Computing (Fortran Edition), Cambridge University Press, Cambridge, New York, 1989.
[22] R.E. Quandt, Computational Problems and Methods, Handbook of Econometrics, Z. Griliches and

M.D. Intrilligator, eds, North Holland, Amsterdam, 1983, pp. 699–764.
[23] C. Renfro, Econometric Software: The First Fifty Years as Perspective, Journal of Economic and

Social Measurement 29(1–3) (2004), 9–208.
[24] C. Renfro, Normative considerations in the development of a software package for econometric

estimation, Journal of Economic and Social Measurement 23 (1997), 277–330.
[25] C. Renfro, Economic data base systems: Further reflections on the state of the art, Journal of

Economic and Social Measurement 23 (1997), 43–85.

38 H.H. Stokes / The sensitivity of econometric results to alternative implementations

[26] C. Renfro, Economic data base systems: Some reflections on the state of the art, Review of Public
Data Use 8 (1980), 121–139.

[27] J. Rogers, J. Filliben, L. Gill, W. Guthrie, E. Lagergren and M. Vangel, StRD: Statistical Reference
Data Sets for Assessing the Numerical Accuracy of Statistical Software, NIST TN#1396, National
Institute of Standards and Technology, 1998.

[28] Simon and Lesage, Assessing the accuracy of ANOVA calculations in statistical software, Compu-
tational Statistics and Data Analysis 8 (1989), 325–332.

[29] B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema and C.B. Moler, Matrix
Eigensystem Routines – EISPACK Guide, (2nd ed.), Springer-Verlag, Berlin, 1976.

[30] D.M. Smith, Algorithm 693, ACM Transactions on Mathematical Software 17(2) (June, 1991),
273–283.

[31] H.H. Stokes, The evolution of economic software design: A developer’s view, Journal of Economic
and Social Measurement 29(1–3) (2004), 205–260.

[32] H.H. Stokes, Specifying and Diagnostically Testing Econometric Models, (2nd ed.), Quorum Press,
Westport, Conn, 1997.

[33] H.H. Stokes, On the advantage of using two or more econometric software systems to solve the
same problem, Journal of Economic and Social Measurement 29(1–3) (2004), 307–320.

[34] G. Strang, Linear Algebra and Its Applications, Academic Press, New York, 1976.

