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This paper examines the ordinary least squares estimates of the
Klein–Goldberger model by Fox (Journal of Political Economy , 64,
1956, 128). Because Klein and Goldberger published the data set
with the model, it is possible to re-examine Fox’s results years later,
and investigate the accuracy with which these estimates were calcu-
lated. The examination reported in this paper was conducted by mak-
ing independent estimates using three different modern econometric
software packages. This examination reveals that the Fox estimates
for a number of the equations of this model are replicable, to the two
or three digits reported by Fox. Fox’s results for other equations can-
not be replicated. Not all the reasons for this lack of replicability can be
determined, but in several cases the computational methods used by
Fox and his assistants have been found to be faulty by modern com-
putational standards.
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1 Introduction

Economists have been using regression to estimate the values of unknown parame-
ters of econometric models since Tinbergen’s first attempts to create his models of
the Netherlands and the USA. Regression as a technique can be traced to the work
of Gauss and Legendre at the beginning of the 19th century and to its general sta-
tistical formalization by Pearson, Yule, and Fisher in the late 19th and early 20th
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centuries. In 1939, the idea of using regression techniques for economic applications
was sufficiently unusual that Tinbergen devoted the second chapter of volume 1 of
his League of Nations study (Tinbergen, 1939) to a careful description of what is
known today by economists as ordinary least squares (OLS).

In the years since, other economists have elaborated on this basic econometric
technique, developing variant forms to deal with a variety of particular circum-
stances. An aspect of this elaboration has been the revolutionary changes that have
occurred in the methods of computation used, so that a natural question on the
50th anniversary of the Econometric Institute is, How might these computational
changes have affected the results? To shed some light on this issue, in this paper
we attempt to replicate OLS parameter estimates by Fox (1956) about the Klein–
Goldberger model, which itself also happens to have been created 50 years ago. For-
tuitously, the data set that underlies this model was published with the model and
therefore still exists. Interestingly, it appears that our attempt to replicate Fox’s orig-
inal estimates is the first replication attempt that has been made. Although the lim-
ited information maximum likelihood (LIML) estimates by Klein and Goldberger
have been employed in various model performance studies (such as Adelman and
Adelman, 1959; Howrey, 1971; Bowden, 1972), neither the Klein–Goldberger nor
the Fox parameter estimation results have been examined during the past 50 years.
What we thought would be a straightforward and simple replication proved to be
anything but.

2 The Klein–Goldberger model

Created at the University of Michigan during the years 1953–1954 and first
described in print in 1955 (Klein and Goldberger, 1955, hereafter “KG”), the KG
model at its inception was pushing the envelope. The electronic computer, nowa-
days so readily available, was then only just beginning to be used by economists.
This model was first estimated using electro-mechanical desk calculators. At that
time, neither did computer software yet exist that could be generally applied, nor
were stored-program computers accessible: worldwide, only one such machine then
existed that was available for general use by economists and that machine was more
than 3000 miles away, at the University of Cambridge (Renfro, 2004a). Undaunted,
KG actually made the job more difficult for themselves than absolutely necessary,
for they chose to apply LIML, rather than OLS. This choice is quite understand-
able given the then-recent Cowles Commission focus on simultaneous equations and
maximum likelihood as concepts, but nonetheless it implied many more calculations,
thereby literally adding days, if not weeks to their work.

On its publication, the KG model was greeted with considerable interest and by
the end of 1956 two papers about the book (and also the model) had appeared, one
by Christ (1956) in the American Economic Review, and the other by Fox (1956) in
the Journal of Political Economy. Of these, that by Fox was somewhat more critical
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Table 1. The 15 equations of the Klein–
Goldberger model.

Equation

1. Consumer expenditure
2. Gross capital formation
3. Corporate savings
4. Corporate profits
5. Depreciation
6. Private wage bill
7. Private gross national product (GNP)
8. Change in wage rates
9. Value of imports

10. Farm operators’ income
11. Farm prices
12. Liquid assets of individuals
13. Liquid assets of businesses
14. Long-term interest rate
15. Short-term interest rate

in its evaluation. Because KG had published not only their model but also all the
sample data used, Fox was able to have alternative parameter estimates calculated
by OLS, which he then published in the context of his paper. See Table 1 for a list
of the 15 stochastic equations, some of which involved relatively complex variable
transformations. We focus on Fox’s Table 3 (Fox, 1956, pp. 135–136) which displays,
to two and sometimes three decimals, KG’s LIML coefficients and standard errors
for two time periods: 1929–1950 (based on the equations given on pp. 50–53 of KG)
and 1929–1952 (based on the slightly different equations given on pp. 90–92 of KG),
as well as Fox’s OLS coefficients and standard errors for the 1929–1952 period.

3 Fox’s OLS

Precisely how Fox obtained his OLS results is unclear. His footnote 7 (Fox, 1956,
p. 131) reads, “I am indebted to Mrs. Martha N. Condee, of the Division of Agricul-
tural Economics, U.S. Department of Agriculture, for carrying out most of the least
squares computations. Additional computations were supervised by Dr. Emil Jebe,
of Iowa State College”. Almost surely these computations were performed with an
electro-mechanical desktop calculator. The most popular method for effecting such
calculations, Doolittle’s algorithm, was well known to economists of the era. It was
featured in Klein’s (1953) econometrics text, as well as Goldberger’s (1964) text,
although it was known to be of limited accuracy (Leavens, 1947). See Goldberger
(2004) for a discussion of econometric computing by hand.

Solving for the least squares coefficients of a regression can be carried out in many
ways. Doolittle’s method, a variant of Gaussian elimination that lends itself to hand
calculation (perhaps with the assistance of a desktop calculating machine), computes
what is called an “LU factorization” which is closely related to the Cholesky decom-
position. A problem with these methods is that they are not particularly acccurate,
 VVS, 2006
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especially in the presence of ill-conditioned data, especially when not many digits are
carried through the calculations. For ill-conditioned data, the QR decomposition is
a much better way to obtain regression estimates.

The effect of the QR decomposition has been illustrated by McCullough (2000b),
who used both the Cholesky and the QR to solve the Wampler1 benchmark regres-
sion test (NIST, 1999). Using double precision on a PC (i.e. representing each num-
ber to 15 or 16 digits), the QR obtains 10 digits of accuracy, while the Cholesky
obtains only six digits of accuracy. The reason the Cholesky is less accurate is that
it does not handle cumulated rounding error as well as the QR. Indeed, it is pos-
sible for a cumulated rounding error to completely corrupt the solution to a linear
regression routine, so that it returns no accurate digits. In particular, McCullough
and Wilson (1999) show that this can happen with the linear regression routine in
Microsoft Excel.

It is worth recalling the results of Longley’s (1967) investigation into the accuracy
of early regression routines programmed on computers. After calculating a regres-
sion problem by hand, he gave the problem to several existing programs. All but
four of the early programs got the answer completely wrong. Of the four “good”
programs, one got only the first digit in each of the coefficients, two gave four digit
accuracy, and another got the first digit correct for some of the coefficients. Regres-
sion programs from the early days of econometrics were not nearly so accurate as
the packages we have today.

4 Replication

As already mentioned, KG provided both the data and the equations for their model,
and we set about attempting to reproduce Fox’s OLS results using three different
software packages: McCullough used RATS v6.2, Renfro used Modler v10.6 Build
22, and Stokes used B34S v8.10Z; features of these and other packages have been
described in a recent census of econometric software packages (Renfro, 2004b).
Each of us separately verified the data used and the construction of the equations.
However, despite the seeming ease of replicating OLS regressions, we did encounter
some difficulties. For example, in his Table 3, Fox presents equation 12 as a standard
OLS regression, but we discovered that it was estimated as a log–log model whose
intercept was then exponentiated. Further, it was the log-base 10, not the natural
logarithm. Nonetheless, we quickly reached agreement with each other. Indeed, we
reached the same answers as Fox for equations 3, 4, 9, 11, 13 and 14, shown in
Table 2. Curiously, for some of the constant terms but not for others, Fox reported
that the standard error is “not available”. We can think of no numerical reason that
this should occur. We have signified such constant terms by a dagger (†).

Reconciling our results with the rest of Fox’s results was not any more easily car-
ried out. For the five equations presented in Table 3, Fox got the slopes correct, but
missed the intercept. Our estimates, denoted “MRS”, show that we can reproduce
 VVS, 2006



OLS estimates of Klein–Goldberger model 185

Table 2. Equations Fox got correct.

3. Corporate savings
Constant −2.59
Corporate income 0.85
Dividends −0.24
Corporate savings (t −1) −0.014

4. Corporate profits
Constant −8.51
Nonwage farm income 0.72

9. Value of imports
Constant 0.29
Disposable income 0.0200
Value of imports (t −1) 0.54

11. Farm prices
Constant −113.36
Price level 2.18

13. Business assets
Constant† 0.40
Private wage bill 0.22
Interest rate −0.45
Price change (t − [t −1]) −0.10
Business assets (t −1) 0.60

14. Long-term rates
Constant 2.58
Short term rate (t −3) 0.44
Short term rate (t −5) 0.26

†signifies “standard error not available”.

Table 3. Equations where Fox missed only the
intercept.

Equation/variable Fox MRS

5. Depreciation
Constant 6.47 6.46
Stock of capital 0.09 ok
Private GNP 0.052 ok

7. Private GNP
Constant† −22.31 −20.29
Man-years worked 2.02 ok
Stock of capital 0.18 ok
Time trend 2.15 ok

8. Wage rate change
Constant 6.73 7.22
Unemployment −1.20 ok
Price change (t −1) (t −2) 0.41 ok
Time trend 0.48 ok

12. Individual assets
Constant† 71.27 71.32
Interest rate −0.74 ok

15. Short-term rates
Constant 11.17 11.15
Excess reserves −0.67 ok

†signifies “standard error not available”.

the slopes but not the intercepts, which suggests that the intercepts were not calcu-
lated directly but rather were calculated after the slopes had been calculated. In the
three variable case, this would be

b0 = ȳ − (b1 × x̄1 +b2 × x̄2).
 VVS, 2006
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If the slopes were only calculated to a couple decimals, then this inaccuracy could
propagate to the intercept. However, this would not explain the observed inaccura-
cies.

Consider equation 7, given in Table 3, and recall that the correct intercept is
−20.29 while Fox reports −22.31. The mean values of private gross national product
(GNP), man-years worked, stock of capital and time trend for the sample period
are 97.006, 46.6834, −2.3775 and 10.9, respectively. When these mean values are
rounded to one digit and combined with the coefficients using the above formula,
we get

97.0− (2.02×46.7+0.18× (−2.4)+2.15×10.9)=−20.337.

When all the numbers are rounded to two significant digits we get

97− (2.0×47+0.18× (−2.4)+2.2×11)=−20.768.

Rounding to one or two digits produces answers much closer to the truth, −20.29,
than to what Fox reported, −22.31. Perhaps the formula that Fox used to compute
the intercept was in error, or perhaps this is a simple typographical error. Absent
specific knowledge of the algorithm used and the number of digits carried, it is all
but impossible to reproduce his results precisely.

In two cases, presented in Table 4, Fox not only missed the intercept, but also one
of the slope coefficients. When the intercept errors are ignored, which we already
have discussed, the slight errors in the slopes are telling. For a problem that is not
numerically difficult, such as the regressions in Tables 2–4, a decent algorithm should
return several digits of accuracy. Fox’s method could not even guarantee three digits
of accuracy, so it must have been quite crude by modern standards, which suggests
that for more difficult regressions, e.g. regressions with highly collinear data, there
may be a tendency for Fox’s method to be completely corrupted by rounding error.

The situation gets interesting in the case of the remaining two equations, shown
in Table 5, where Fox missed (almost) everything. The discrepancies in equation 10
are sufficiently small that we are comfortable attributing the errors in Fox’s results
to a mild case of cumulated rounding error. The discrepancies in equation 1 are the
cause for concern: it could be a severe case of numerical error, or it could be that

Table 4. Equations where Fox missed the
intercept and one slope.

Equation/variable Fox MRS

2. Capital formation
Constant −16.70 −16.75
Nonwage income 0.78 ok
Stock of capital −0.073 −0.074
Business liquid assets 0.14 ok

6. Private wage bill
Constant† −3.15 −3.06
Private GNP 0.38 ok
Private GNP (t −1) 0.13 ok
Time trend 0.12 0.11

†signifies “standard error not available”.
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Table 5. Equations where Fox missed the inter-
cept and slopes.

Equation/variable Fox MRS

1. Consumption
Constant† −21.06 −59.79
Wage and salary 0.62 0.35
Nonfarm income 0.46 1.04
Farm income 0.39 0.52
Expenditure (t −1) 0.21 0.15
Assets (t −1) 0.072 0.10
Population 0.25 0.57

10. Farm income
Constant 0.33 0.36
Nonfarm income 0.010 0.011
Nonfarm income (t −1) 0.026 0.023
Agricultural exports 0.013 0.013

†signifies “standard error not available”.

Fox ran one regression but reported another. As a tentative check on the Fox
calculations, we re-ran equation 1 using single precision calculation and a Cholesky
decomposition. The results agreed to four digits with the results we obtained using
our regression packages. This tells us that Fox carried fewer than eight digits through
his OLS calculations: if he had carried at least eight, his reported results probably
would have been correct to at least two decimals, even using the Doolittle method.

5 Further examination

To gain further insight into the inaccuracies in equations 1 and 10, for all 15 equa-
tion we computed the summary regression statistics reported by Fox, the R2 and
the standard error of the estimate (s.e.e.). We failed to replicate Fox in only three
cases, given in Table 6. Of these, although we were not surprised to be unable to
replicate equations 1 and 10 immediately, because of their relative complexity, we
were surprised by equation 2, which is on the face of it is a simple specification.
None of the discrepancies is large enough to reveal a pattern, so we next computed
the condition number for each equation.

The condition number can be a measure of how many digits of accuracy might be
lost when computing a regression. When solving a linear system of the form Ax =b,

Table 6. Incorrect summary
statistics.

Equation R2 s.e.e.

1. Consumption
Fox 0.998 1.03
MRS 0.999 0.99

2. Capital formation
Fox 0.863 3.32
MRS 0.865 3.30

10. Farm income
Fox 0.269 1.03
MRS 0.265 ok
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one significant digit of accuracy might be lost for every power of 10 in the condition
number (Judd, 1998, p. 68). When operating in double precision, a condition num-
ber of order 10E5 (10 to the fifth power) would present no problem – quite the con-
trary, however, if operating in single precision. An excellent example is presented by
Auckland’s Department of Engineering Science (2003). Consider the system Ax =b




1.00000 0.50000 0.33333 0.25000
0.50000 0.33333 0.25000 0.20000
0.33333 0.25000 0.20000 0.16667
0.25000 0.20000 0.16667 0.14286







x1

x2

x3

x4


=




1.0
2.0
3.0
4.0


.

The correct solution, obtained using double precision, is given to five digits by
x′ = [−66.514, 927.65, − 2585.9, 1862.6]. In contrast, single precision provides only
three correct digits for each element of x. If, however, the LU factorization is used
and only five digits are carried through the calculations, then the following “solu-
tion” is obtained: x′ = [−85.769, 1157.9, − 3160.4, 2245.1]. This dramatic change is
explained by the condition number of the numeric matrix A being 1.6 × 10E4. We
see that because its condition number is of order 10E4, if solution is attempted car-
rying only five digits, the answer will involve no accurate digits.

However, the issue here is not just the computed size of the condition number.
As explained in detail in McCullough and Vinod (2004), for the condition number
to have implications for the accuracy of the solution, it is important that the matrix
in question be “inherently ill-conditioned” and not “artificially ill-conditioned”. If
the matrix is only artificially ill-conditioned, then there is no concomitant loss of
accuracy in the solution of the system. In the present case, if a simple rescaling of
the variables can change the matrix from ill-conditioned to well conditioned, then
the matrix is said to be artificially ill-conditioned. As explained by McCullough
and Vinod (2004), the recommended treatment for distinguishing an artificially ill-
conditioned matrix from an inherently ill-conditioned matrix involves an exhaustive
eigenvalue analysis of the suspect system. When there are several equations to con-
sider, a useful expedient is recommended by Drukker and Wiggins (2004, footnote
6): scale each variable to have a mean whose absolute value is approximately unity.
We adopt this expedient, and compute condition number of the covariance matrix in
the L2 norm as the ratio of the largest eigenvalue to the smallest eigenvalue. Results
are presented in Table 7.

It is immediately obvious that according to the usual criterion, equations 1 and
10 are the two equations with the highest condition numbers. However, when the
condition number of the rescaled systems is evaluated, it becomes apparent that
equation 10 was artificially ill-conditioned, rescaling having reduced its condition
number from 1.9E6 to 9.1E3. Thus, we conclude that only equation 1 is ill-condi-
tioned. If the condition number is of order 10E6 and fewer than eight digits were
carried through the calculations, then it is quite plausible that the observed discrep-
ancies in equation 1 might be due to cumulated rounding error. Before reaching a
determination as to the source of the inaccuracy of Fox’s results for equation 1, we
 VVS, 2006
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Table 7. Condition numbers.

Equation Original Rescaled

1. Consumption 3.9E8 3.0E6
2. Capital formation 8.1E4 9.9E2
3. Corporate savings 1.3E4 1.6E3
4. Corporate profits 4.3E3 6.4E1
5. Depreciation 2.3E5 2.6E2
6. Private wage bill 5.5E5 1.5E3
7. Private GNP 3.0E5 5.2E3
8. Wage rate change 3.2E3 1.0E2
9. Value of imports 1.7E5 1.1E3

10. Farm income 1.9E6 9.1E3
11. Farm prices 2.2E5 1.6E2
12. Individual assets 1.9E1 7.2E0
13. Business assets 4.5E4 2.6E2
14. Long-term rates 4.6E1 3.2E1
15. Short-term rates 1.5E3 8.0E0

Table 8. Versions of consumption equation.

Variable MRS: KG specification Fox’s results MRS: Theil specification

Constant† −59.79 −21.06 −32.54
Wage and salary 0.35 0.62 0.69
Nonfarm income 1.04 0.46 0.50
Farm income 0.52 0.39 0.38
Expenditure (t −1) 0.15 0.21 0.21
Liquid assets (t −1) 0.10 0.063 0.05
Population 0.57 0.25 0.32
R2 0.9986 0.998 0.9984
s.e.e. 0.9900 1.03 1.0480
Condition number 3.9E8 na 2.2E8
Rescaled 3.0E6 na 1.4E6

†signifies “standard error not available”.

need to examine equation 1 more carefully. In particular, we want to consider the
possibility that Fox actually did not report results that correspond to the regression
that was performed by his assistants.

For equation 1, the consumption equation, Table 8 shows our estimates using
the KG specification, Fox’s published results, and our estimates using an alternative
specification given by Theil. Equation 1 (as per p. 90 of KG) is given by

Ct =b0 +b1(W1 +W2 −TW )t +b2(P −TP −SP)

+b3(A1 +A2 −TA)t +b4Ct−1 +b5(L1)t +b6(NP)t,

where “wage and salary income” (the variable corresponding to coefficient b2) is
defined as P − TP − SP, with P as “nonwage nonfarm income”, TP as “personal
and corporate taxes less transfers associated with nonwage nonfarm income” and
SP as “corporate savings”. Theil’s (1971, p. 469) discussion of the KG model gives
a slightly different definition of wage and salary income: P − TP − SP − TC where
TC is the “corporate income taxes. Although this definition used by Theil is at odds
with what is given in KG, it nonetheless provides for a result much closer to Fox’s
results, as shown in Table 8.
 VVS, 2006
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The consequence of this change is that in addition to all the slope coefficients
being much closer to Fox’s results, the R2 now rounds to Fox’s R2 and the s.e.e.,
once off by 0.04 is now off by less than half that amount. The magnitude of the
differences between the Fox results and the MRS results for equations 1 and 10 are
approximately the same. With the modified specification the equation is still ill-con-
ditioned of order 10E6. As Fox carried fewer than eight digits through his caclua-
tions, even if he did use Theil’s specification, his results would still not match ours
due to cumulated rounding error. We think it quite possible that Fox did not actually
estimate the equation he claimed to estimate.

6 Conclusions

We have shown by our examination of Fox’s (1956) results that econometric cal-
culations made during the pre-computer age cannot necessarily be taken at face
value. We found two instances in which the results are simply not replicable, and
other instances in which the results have been marred by computational or numerical
problems. Originally, Fox put his estimates forward not just as alternative estimates
to those of KG, but as potentially better estimates. In his paper he suggested that,
“. . .the reliability of the coefficients expressing relationships between economic vari-
ables is of great importance” and noted that “KG laid considerable stress upon the
statistical method by which their coefficients were estimated – the ‘limited informa-
tion maximum likelihood method”’. Considering the computationally more tractable
OLS estimates that Fox provided – which we know now cannot be accepted at face
value – what are we to think of the computationally more complex LIML estimates?
Therefore, we need to continue to test and improve the software that economists use,
and also to increase the opportunity for published work to be replicated and verified.

However, our main aim is not so much to call attention to problems with Fox’s
estimates as to illustrate by this example – which in fact we originally only chanced
upon in the course of other research – the importance of the independent verifi-
cation of applied results. Inasmuch as Fox made the point in his paper that KG’s
choice of estimation method is open to criticism, and he countered by providing
his own estimates, it is now educational to realize that the differences between the
KG and the Fox estimates are not what Fox indicated. Just as important, if not
more so, it is unfortunately the case that today there is too little independent verfi-
cation of more recent published results. What makes this unfortunate is that there is
solid evidence from the few verification studies conducted so far that the computing
advances of the past 50 years have not eliminated problems of computational inac-
curacy and, in addition, that at least a portion of today’s published research cannot
be replicated, both in the sense that the work is not replicable and that attempts
at replication are only seldom possible. On the basis of these few replication studies
which have been performed during the past 20 years (Dewald, Thursby and Ander-
son, 1986; McCullough and Vinod, 2003; McCullough, McGeary and Harrison,
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2006a,b; etc), we have reason to believe that some applied research is not replica-
ble. However, it is also true that, because in many cases the original data used, and
very often the computational methods employed, are hidden from readers of mod-
ern published research, attempts at replication and independent verification cannot
generally be performed.

We know that existing software packages can be inaccurate, as we and others
have shown. It is not uncommon for different packages to give different answers
to the same problems, as McCullough and Renfro (1999) have shown for general-
ized autoregressive conditionally heteroscedastic (GARCH) models, Brooks, Burke
and Persand (2003) for multivariate GARCH models, Newbold, Agiakloglou and
Miller (1994) for autoregressive moving average models, and Stokes (2004) for pro-
bit models. In general, it is not safe to assume that software is accurate (McCul-
lough, 1998, 1999a,b, 2000a).

Replication is an important area of research for three reasons. First, replication
is the cornerstone of science: it purges incorrect results from the cumulative body of
knowledge. Secondly, there has been precious little replication performed in econom-
ics and, consequently, precious little purging. Thirdly, every time a systematic effort
has been undertaken to assess the replicability of economic research, the result has
been negative. Dewald, Thursby and Anderson (1986) analyzed 54 papers from
a journal and were able to replicate all the results from only two papers. McCul-
lough et al. (2006a) analyzed the same journal 20 years later and were able to
replicate 14 of 62 papers, an improvement to be sure, but hardly one that inspires
confidence. McCullough et al. (2006b) analyzed another journal and were only able
to replicate nine of 117 papers, which suggests that the need for purging the eco-
nomics literature is not negligible.

What is necessary to change this? Policies that require authors to make their data
and code available upon request do not work. McCullough and Vinod (2003) ana-
lyzed such policies at three journals and found that only six of 15 authors would
respond to a request, and this was after making multiple attempts for many of the
authors. Rather, mandatory data/code archives are the solution; see Anderson et al.
(2005) for an extended discussion. In response to McCullough and Vinod (2003),
the American Economic Review adopted such an archive (Bernanke, 2004). Shortly
thereafter, both Econometrica and Review of Economic Studies did so, too. More
recently, Journal of Political Economy has joined the club. We can hope that more
journals will follow this trend for, if so, we might finally see the end of software and
replicability problems that have plagued economics for the past 50 years.
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