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Although it is possible to test the calculation accuracy of a software system’s implementation of OLS
using sample datasets that have been extensively studied and have benchmarked answers, this approach
will not help access the calculation accuracy of a user’s model for which such answers are not available.
Since in theory estimated residuals of an OLS model are required to be orthogonal to the right-hand-side
variables, this paper investigates the impact of changes in data precision and calculation method on the
software’s success in achieving this goal. In attempting estimation of an OLS model the investigator must
make two critical decisions. The first decision is the precision of the data used in the calculation, both how
it was loaded and whether its precision was subsequently increased for the actual calculation. The second
and related decision is the calculation method. To investigate these tradeoffs, two rather simple and well
known data sets that do not exhibit extreme multicollinearity are used to illustrate the data precision /
calculation method accuracy tradeoff.

1. Introduction

In the uncertain world of econometric practice, care should be exercised in de-
termining if OLS model calculations have been made using appropriate methods to
achieve sufficient accuracy. This need for caution was famously driven home by
Longley’s [9] important paper in 1967 which implies serious accuracy problems can
occur if estimation was attempted with mulicollinear datasets and sufficient precau-
tions were not followed. The research methodology computational decision includes
both deciding on the appropriate estimation method and selecting sufficient data pre-
cision to make the calculation possible.1 As a basis for the argument to be presented
here, it is assumed that in all cases the computer routines are top quality in their

1Altman-Micah-Gill-McDonald [1, p. 256] note “Surprisingly, inputting data into a statistical software
package is not necessarily a straightforward process. Measurement errors occurs when the precision level
of a statistical softweare package is exceeded. Observations may be silently truncated . . . ” The above
quote is concerned whether due to less that needed precision in the data loading step, the “wrong” problem
is solved and/or the X′X matrix rank is reduced. In the present paper we assume the problem implicit by
the data loading precision and assess the accuracy of the resulting calculation.
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implementation.2 To demonstrate the quality of this code, absent a benchmark for
the problem at hand, appropriate diagnostics should be performed to give confidence
in the results. The suggested testing procedure which will be illustrated below, builds
on the orthogonality assumptions implicit in OLS modeling and provides a test on
the success of the calculation.

One of the key assumptions of the Classical Linear regression model, as discussed
in Greene [13, pp. 10,24] among others since the 1960’s classic texts by Goldberg-
er [12] and Johnston [7], is the exogeneity of the independent variables, in the sense
of these variables being distributed independently of the error term or else fixed in
repeated sampling. In principle, under computationally ideal circumstances, the solu-
tion of the normal equations constructively imposes the restriction that the correlation
between the residual error vector and each right hand side variable is constrained to
be zero. However, in practice, this ideal mathematical result will not necessarily
be obtained to a sufficient degree of accuracy. As will be demonstrated, if the data
precision is not sufficient, the data matrix is not scaled, or the estimation method
is not appropriate for the problem, the OLS estimated residuals can fail to be or-
thogonal to the equation’s right-hand-side variables to an appropriate tolerance. This
finding suggests the need to establish, as a diagnostic test, whether after a calculation
orthogonality is sufficiently precisely achieved. Such a test can be especially useful
in certain cases, such as when benchmark values for the estimated coefficients are
unavailable, as indicated above.

More formally, it is well known that, in theory, if in the population the right hand
side variables X of a linear model y = Xβ + e are exogenous and X is full rank (the
inverse of X ′X exists) ordinary least squares (OLS) can be an appropriate estimator
of β. Furthermore, in this case OLS estimation of the sample coefficient vector β̂ =
(X ′X)−1X ′y ideally minimizes the sum of squared sample errors ê ′ê, in the process
imposing the restriction that there is no correlation between the estimated residuals
and the vectors of X, or X ′ê = 0.3 As shown for example by Greene [13, p. 20], if

2Subsequent to Longley’s 1967 paper [9], in 1979 Dongarra, Moler, Bunch and Stewart [5] released
the LINPACK subroutine library that became the gold standard for modern numerical calculation for
many years. The importance of this release was that given the selected method, if the LINPACK matrix
library was used the calculations would be performed as accurately as possible. While in 1961 a popular
linear algebra book such as Hadley [6] did not mention the QR algorithm, in 1976 Strang’s linear algebra
book [22] did have these modern techniques covered and mentioned LINPACK explicitly since it had
been circulating in test version form prior to its final release in 1979. In 1984 Longley [8] discussed
Orthogonalization methods in detail to supplement material from his famous 1967 paper. In 1992
Anderson et al. [2] released LAPACK that further defined LINPACK, especially for large problems.
Altman-Micah-Gill-McDonald [1] provides an up-to-date discussion of some of the technical issues from
a modern perspective. Due to space limitations these will not be dealt with here.

3The inverse can be obtained with an LU factorization or marginally more accurately with a Cholesky
factorization. The intrinsically more accurate QR approach proceeds by factoring QR = X and is often
used in less than ideal computational conditions. The condition number of a matrix λ(X) is defined
as the ratio of the largest to the smallest eigenvalue and provides insight into the problem. The larger
the condition, the more difficult it is from a numerical standpoint to invert a matrix. Belsley et al. [3]



H.H. Stokes / A benchmark-free approach to access the accuracy of an OLS model calculation 3

this result were obtained, the unexplained sum of squares could be reduced. However,
the achievement of X ′ê ∼= 0 in practice is not necessarily assured: specifically, the
numerical solution of the normal equations may be unsuccessful in imposing the
restriction that the error term is orthogonal to the right hand side variables. 4 Thus at
issue is the degree to which the actual calculations made are sensitive to the problem
at hand, the data precision and the method of obtaining the OLS estimates.

Stokes [21] previously investigated a number of aspects of the OLS solution
problem using analysis of highly collinear test data sets, in particular the Filippelli
data set considered by Rogers et al. [18]. The focus of this research was to see how
closely the estimated coefficients matched known test values for different estimation
strategies. However, in the context of this research, the properties of the estimated
residuals were not directly tested. In order to extend these results, the object in the
present paper is to see how closely the estimated residual agrees with the theoretical
orthogonal property of the residual against right-hand-side variables.

There are a number of good reasons to pursue this approach. First, test benchmarks
are then not necessarily needed for the problem at hand, since given the machine
precision, the more accurate the calculations the closer the estimated correlation
between the estimated residual and the right-hand-side vectors will approach zero.
Second the estimated correlation provides a way to generate a single number that
can be used to compare the accuracy of the calculation of two different problems and
in the process indicate if the data precision or method of estimation are appropriate
for the problem at hand. In an OLS model containing k right-hand-side variables
plus a constant, the maximum absolute correlation of the residual and one of the k
right-hand-side variables indicates the worst case.

advises if the condition is � 20. There is cause for concern. It can be proved that λ(X) =
√

λ(X′X).
In situations when there is substantial multicollinearity in a regression model λ(X) is already large.
Forming X′X just makes matters worse from a numerical sense and provides the rationali for use of
the QR approach. After a QR factorization, Q is n by k and R is k by k upper triangular and, in
fact, is a more accurate Cholesky factorization of X′X. Note that R′R = X′X. QQ′ �= I and
is n by n, while Q′Q = I and is k by k. The QR approach thus gains accuracy over the more
traditional approach by not having to explicitly form X′X. Using the QR factorization, β̂ = R−1Q′Y .
If the residual is all that is needed, then ê = Y − QQ′Y . This can be easily seen if we note that
ê = Y − Xβ = Y − QRR−1Q′Y = Y − QQ′Y . A less accurate, although mathematically
equivalent, way to proceed is to calculate ê = Y − Xβ = Y − XR−1Q′Y , which looses accuracy in
the R−1 step, although the more accurate QR R can be used in place of the Cholesky R. In summary,
the LU / Cholesky approach to OLS model estimation requires first forming the cross product matrix
which inhenently causes accuracy losses that are avoided by the QR approach that proceeds by factoring
X directly. The essential message, that will be illustrated with a number of example below, is that both
computational techniques can make a substantial difference in the accuracy of an econometric calculation.

4If some of the right hand side variables are endogenous, then in the population they are related to the
error term of the equation. Imposing the orthogonality restriction as is the case with OLS, thus causes a
bias. Provided identification restrictions are met, in this case two stage least squares should be used in
place of OLS. Two stage least squares replaces the right hand side endogenous variables with instrumental
variables that it hopes are orthogonal to the error term. This issue is not the focus of the present paper.
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2. Factors that impact estimation accuracy

There are number of factors that impact estimation accuracy, which will only be
sketched at this point. These include the number of digits of precision with which
numbers are represented in the data storage, how many significant digits on data
input, and the particular method of calculation. The present paper is concerned
mainly with investigating the effects of the precision with which the data are saved
and the calculation method, although the importance of how many digits to report,
given the input precision of the data, may also be of interest.

When a number is held in the computer, it is held with a certain degree of precision.
At issue is the factors influence this decision. On conversion from single precision
to double precision the computer will simply add some random digits during this
process – as opposed to when real*8 is used every step of the way. At issue is how
implicit assignment statements are handled. A Fortran program to investigate these
ideas is shown in Table 1.5 This program illustrates the fact that the code

real*8 x
x= 34.834702d-0

is not the same as

real*8 x
x= 34.834702e-0

Answers are given in Table 2 that were obtained after compilation using the
Lahey/Fujitsu Fortran 95 Compiler Release 7.10.02. The data used in this example
came from the NIST dataset distributed by the National Institute of Standards and
Technology. This dataset is further discussed in Rogers et al. [18].

Five test problems were run for three assignment tests and three reading tests. The
internal assignment tests for example 1 are discussed first.

– DIFF1, defined as dlog(xd(i)) - dlog(dble(y(i))), is between a real*8
variable xd loaded from a statement such as xd(1)= 34.834702d-0 and y
which was loaded from an E number and was 2.486846548163719E-02.

– DIFF2, defined as dlog(x(i)) - dlog(dble(y(i))), replaces the x assign-
ment with x(1)= 34.834702e-0. DIFF2 = 2.486845222146733E-02
which is quite different from DIFF1.

– DIFF3, defined as, dlog(x(i)) - dlog(r8y(i))), compares x and r8y where
r8y was read from a E number directly into a real*8 number. Since DIFF2 =
DIFF3 it proves that the differences are not due to the use of the Fortran function
dble.

5Although the Table 1 example is in Fortran, the argument could easily have been made using C or
C++ code.
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Table 1
Fortran Program to illustrate precision conversion issues

real*8 x(3),xd(3),r8y(3),r8yd(3),diff1,diff2,diff3,diff4,diff5

real*4 y(3)

character*80 cwork1,cwork2,cwork3,cwork4

c numbers taken from

c Bennett, L., L. Swartzendruber, and H. Brown,

c NIST (1994).

c Superconductivity Magnetization Modeling.

c

c

c cwork1 real*8 x

c cwork2 real*4 x

c cwork3 real*8 y

c cwork4 real*4 y

c

cwork1='34.834702d-0 34.393200d-0 34.152901d-0'

cwork2='34.834702e-0 34.393200e-0 34.152901e-0'

cwork3='33.979099d-0 33.845901d-0 33.732899d-0'

cwork4='33.979099e-0 33.845901e-0 33.732899e-0'

c

itestchar=1

c

xd(1)= 34.834702d-0

xd(2)= 34.393200d-0

xd(3)= 34.152901d-0

x(1)= 34.834702e-0

x(2)= 34.393200e-0

x(3)= 34.152901e-0

y(1)= 33.979099E-0

y(2)= 33.845901E-0

y(3)= 33.732899E-0

r8y(1)= 33.979099e-0

r8y(2)= 33.845901e-0

r8y(3)= 33.732899e-0

r8yd(1)= 33.979099d-0

r8yd(2)= 33.845901d-0

r8yd(3)= 33.732899d-0

write(6,*)'x a real*8 variable loaded from a number E'

write(6,*)'xd a real*8 variable loaded from a number D'

write(6,*)'y a real*4 variable loaded from a number E'

write(6,*)'r8y a real*8 variable loaded from a number E'

write(6,*)'r8yd a real*8 variable loaded from a number D'

write(6,*)' '

write(6,*)'Shows effect of setting a real*4 number in real*8'

do i=1,3

diff1=dlog(xd(i)) - dlog(dble(y(i)))

diff2=dlog(x(i)) - dlog(dble(y(i)))

diff3=dlog(x(i)) - dlog(r8y(i))

diff4=dlog(x(i)) - dlog(r8yd(i))

diff5=dlog(xd(i)) - dlog(r8yd(i))
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Table 1, continued

write(6,*)' '

write(6,*)'Example ',i

write(6,*)'Test 1: xd - y real 8-real*4 diff1',diff1

write(6,*)'Test 2: x - y real 8-real*4 diff2',diff2

write(6,*)'Test 3: x - r8y real*8-real*8 diff3',diff3

write(6,*)'Test 4: x - r8yd real*8-real*8 diff4',diff4

write(6,*)'Test 5: xd - r8yd real*8-real*8 diff5',diff5

enddo

c

if(itestchar.ne.0)then

write(6,*)' '

write(6,*)'----------------------------------------------------'

read(unit=cwork1,fmt=*)xd

read(unit=cwork2,fmt=*)x

read(unit=cwork3,fmt=*)r8yd

read(unit=cwork4,fmt=*)y

read(unit=cwork4,fmt=*)r8y

write(6,*)'x a real*8 variable loaded from a number E'

write(6,*)'xd a real*8 variable loaded from a number D'

write(6,*)'y a real*4 variable loaded from a number E'

write(6,*)'r8y a real*8 variable loaded from a number E'

write(6,*)'r8yd a real*8 variable loaded from a number D'

write(6,*)' '

write(6,*)'* read does not differentiate between E and D'

do i=1,3

diff1=dlog(xd(i)) - dlog(dble(y(i)))

diff2=dlog(x(i)) - dlog(dble(y(i)))

diff3=dlog(x(i)) - dlog(r8y(i))

diff4=dlog(x(i)) - dlog(r8yd(i))

diff5=dlog(xd(i)) - dlog(r8yd(i))

write(6,*)' '

write(6,*)'Example ',i

write(6,*)'Test 1: xd - y real 8-real*4 diff1',diff1

write(6,*)'Test 2: x - y real 8-real*4 diff2',diff2

write(6,*)'Test 3: x - r8y real*8-real*8 diff3',diff3

write(6,*)'Test 4: x - r8yd real*8-real*8 diff4',diff4

write(6,*)'Test 5: xd - r8yd real*8-real*8 diff5',diff5

enddo

endif

stop

end

– DIFF4, defined as dlog(x(i)) - dlog(dble(r8yd(i))), uses x and r8yd
where r8yd loads from a D number and was 2.486847353604857E-02.

– DIFF5, defined as defined as dlog(xd(i)) - dlog(dble(r8yd(i))), was
2.486847353604857E-02 and should be the most accurate calculation
since it is the difference between two real*8 numbers where both were read
from D numbers.

The above examples shows how data loading effects the answers even with numbers
well within ranges for real*4.6 It suggests that software developers use caution in

6The above tests were run with the Lahey/Fujitsu Fortran 95 Compiler Release 7.10.02 on a Dell 650
workstation using Windows XP Professional. The same problem was run with the F77 and G77 compilers
on a Linux workstation running RedHat with the same exact answers except that less digits were printed.
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Table 2
Answers for assignment/read accuracy test

x a real*8 variable loaded from a number E

xd a real*8 variable loaded from a number D

y a real*4 variable loaded from a number E

r8y a real*8 variable loaded from a number E

r8yd a real*8 variable loaded from a number D

Shows effect of setting a real*4 number in real*8

Example 1

Test 1: xd - y real 8-real*4 diff1 2.486846548163719E-02

Test 2: x - y real 8-real*4 diff2 2.486845222146733E-02

Test 3: x - r8y real*8-real*8 diff3 2.486845222146733E-02

Test 4: x - r8yd real*8-real*8 diff4 2.486846027587871E-02

Test 5: xd - r8yd real*8-real*8 diff5 2.486847353604857E-02

Example 2

Test 1: xd - y real 8-real*4 diff1 1.604095699681202E-02

Test 2: x - y real 8-real*4 diff2 1.604095468979484E-02

Test 3: x - r8y real*8-real*8 diff3 1.604095468979484E-02

Test 4: x - r8yd real*8-real*8 diff4 1.604096914524724E-02

Test 5: xd - r8yd real*8-real*8 diff5 1.604097145226443E-02

Example 3

Test 1: xd - y real 8-real*4 diff1 1.237394708902339E-02

Test 2: x - y real 8-real*4 diff2 1.237393818204299E-02

Test 3: x - r8y real*8-real*8 diff3 1.237393818204299E-02

Test 4: x - r8yd real*8-real*8 diff4 1.237392964907340E-02

Test 5: xd - r8yd real*8-real*8 diff5 1.237393855605380E-02

------------------------------------------------------

x a real*8 variable loaded from a number E

xd a real*8 variable loaded from a number D

y a real*4 variable loaded from a number E

r8y a real*8 variable loaded from a number E

r8yd a real*8 variable loaded from a number D

* read does not differentiate between E and D

Example 1

Test 1: xd - y real 8-real*4 diff1 2.486846548163719E-02

Test 2: x - y real 8-real*4 diff2 2.486846548163719E-02

Test 3: x - r8y real*8-real*8 diff3 2.486847353604857E-02

Test 4: x - r8yd real*8-real*8 diff4 2.486847353604857E-02

Test 5: xd - r8yd real*8-real*8 diff5 2.486847353604857E-02

Example 2

Test 1: xd - y real 8-real*4 diff1 1.604095699681202E-02

Test 2: x - y real 8-real*4 diff2 1.604095699681202E-02

Test 3: x - r8y real*8-real*8 diff3 1.604097145226443E-02

Test 4: x - r8yd real*8-real*8 diff4 1.604097145226443E-02

Test 5: xd - r8yd real*8-real*8 diff5 1.604097145226443E-02

Example 3

Test 1: xd - y real 8-real*4 diff1 1.237394708902339E-02

Test 2: x - y real 8-real*4 diff2 1.237394708902339E-02

Test 3: x - r8y real*8-real*8 diff3 1.237393855605380E-02

Test 4: x - r8yd real*8-real*8 diff4 1.237393855605380E-02

Test 5: xd - r8yd real*8-real*8 diff5 1.237393855605380E-02
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internal assignment statements that, except for open source code, are hidden from
the user. If data is to be initialized into a real*8 variable, then D not E format should
be used.

The next set of examples uses the Fortran internal * read to test if an E number
read into a real*8 is seen by the run time I/O routines as real*8. The fact that
DIFF1=DIFF2 and DIFF3=DIFF4=DIFF5 offers convincing evidence that data
using E format can be read into real*8 variables without an accuracy loss due to
conversion.

The above examples document the accuracy loss when calculations are made using
real*8 data that is first read into a real*4 variable. Such data will have measurement
error that was not detectable by any testing of the correlation between the residual and
the right had side vectors since the OLS solution world attempt to force the residual
to be orthogonal to the data that contains the measurement error.

It should be noted that a distinction has to be made between real world data and
data sets that are created in order to be used for benchmark tests. In the case of real
world data, we know that rounding has occurred, and that the data as obtained are
generally rather imprecise. In contrast, in the case of created (test) data, we assume
the precision of the input data. In the NIST data sets of Rogers et al. [18], the implicit
assumption is that all m digits reported in the input data are accurately known and
that trailing data points are exactly 0. This can only be assumed true for the problem
input series. In a model such as Filippelli y = f(x, x2, . . . , x10) where data has to
be built before the calculation, only y and x are assumed to be explicitly known to
m digits.7 The accuracy of the other variables in the model are determined by the
precision of the data calculation forming (x i for i > 1). Hence in this case we have
exact data input for only y and x with calculation errors induced in x i for i > 1. Since
the exact data is input into a floating point representation, the size of the mantissa
(real*8 or real*4) in the floating point examples discussed later impacts the accuracy
of subsequent calculations.8 An alternative to floating point calculation is to use
variable precision mathematics where (xi for i > 1) can be calculated to any degree
of accuracy. For further information on these issues see Altman-Gill-McDonald [1,
chapter 2].

Whether this example generalizes to all compilers is an open question but one that should be addressed
by software developers.

7For the Filippelli data y is given to 4 digits and x to 10 digits. Stokes [21] investigates this problem
in some detail using alternative estimation methods and alternative data precision.

8Altman-Gill-McDonald [1, pp. 23–29] have a comprehensive discussion of some of the problems of
computer arithmetic. Using their notation, floating point numbers are represented as y = ±m × βe−1

where m is the mantissa and β is the base. A IEEE single precision number (REAL*4 in Fortran) has a
relatively limited size mantissa that permits only 5–7 digits of representation. In contract, a double floating
point number (REAL*8 in Fortran) has a larger mantissa that permits 12–14 digits of representation. Since
most numbers used in economic analysis do not get outside the real*4 range, it is the size of the mantissa
that causes number accuracy issues.
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Table 3
Vector (y) and matrix (X) norms and matrix (X) condition estimates

Norm/Condition Vector Matrix

One-Norm ‖y‖1 = Σi|yi| ‖X‖1 = maxj Σi|xij |
p-Norm ‖y‖2 = (Σi|yi|2).5 ‖X‖2 = maxi si where si singular value of X
Infinity-Norm ‖y‖∞ = maxi |yi| ‖X‖∞ = maxi Σj |xij |
Frobenius norm ‖y‖F = ‖y‖2 ‖X‖F =

√
(Σij |xij |2) =

√
Σii(diag(x′x))

Condition ‖X‖p‖X−1‖p p = 1, 2,∞, F

3. Numerical complexity of a problem

The prior section has focused on the precision of the number storage as a limiting
factor in calculation accuracy. Another important factor impacting the accuracy of
the final calculation is whether the number to be saved can be exactly represented as a
factor of 2. The number 0.1, which has an infinitely repeating binary representation,
is a example of a number that cannot be exactly represented. In addition to these
representation issues is the numerical complexity of the data to be analyzed. There
are a number of measures that address this issue. A good reference is the LAPACK
guide, Anderson, Bai, Biscof et al. [2] and Moler [11], that illustrate the use of vector
and matrix norms to classify the numerical complexity of a problem and the expected
calculation accuracy. The suggested measures are listed in Table 3.

Moler [11, pp. 67–72] shows that given a system Xβ = y, following Wilkinson’s

pioneering analysis, the relative residual is ‖u−Xβ̂∗‖
‖X‖‖β̂‖ � pε and the relative error

in the coefficient is ‖β̂−β̂x‖
‖β̂x‖ � pκ(X)ε, where ε is the relative machine precision

that is a function of whether real*8 or real*4 data storage is being used, κ(X) is
the matrix condition and p is usually set as 10. ‖X‖ can be calculated with any of
the four methods listed in Table 1, although ‖X‖2 is most common. Define β̂ as
the true/exact coefficient vector while β̂∗ is the calculated coefficient vector.9 The
importance of this discussion is that it shows how accuracy bounds of the error term
and the estimated coefficient are a function of both the characteristic of the problem,
as measured by the condition number of and the precision of the data storage as
measured by . For real*8 the Fortran epsilon function returns 2.220446049250313E-
16 while for real*4 and real*16 the corresponding values are 0.19209290E-07 and
1.9259299443872358530559779425849273E-0034, respectively. 10 Given the data
precision, absolute values of the correlation of the residual and a right-hand-side
variable less than or equal to these values should be assumed to be 0.0. Such

9The term “true” does not mean population coefficient. What is meant is the calculated parameter if
variable precision math were used to obtain an exact answer given the data.

10This is often confusion between what is returned by the Fortran function epsilon( ) in contrast to the
Fortran function tiny( ). The first being a positive value that is almost negligible compared to unity, while
the second is the smallest representable positive number of data type. For example the Fortran program
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residuals have met the orthogonality assumption of OLS.11 Assume X is an n by k
matrix of right-hand-side variables whose condition is κ(X). The condition number
of X ′X can be shown to be [κ(X)]2, which makes a difficult problem harder and is a
major motivating reason for using the QR approach to estimate an OLS model rather
than explicitly forming X ′X . If X ′X is needed, R from the QR should be used in
place of the Cholesky factorization of X ′X . Detailed discussion of these issues will
not be pursued further, since the major motivation of this paper is to illustrate by
example the magnitude of the accuracy problem if the data storage precision is not
sufficient. By design, what appear to be relatively simple problems are used so that
the reader will see that the issues raised in the paper will be applicable to researchers
solving everyday problems.

4. Testing residual orthogonality with the right-hand-side variables

A comparison between the accuracy of single precision (real*4) and double preci-
sion (real*8) calculation in imposing the restriction E(e, x i) = 0 will be illustrated
using two representative data sets. One is the GE equation of the famous Grun-
feld [16] data, discussed by Theil [24] and recently used as the basis for a number
of benchmarks of various regression diagnostic tests by Renfro [17], which involves
two variables on the right plus the constant. This problem appears to have minimal

real*4 r4
real*8 r8
real*16 r16
write(6,*)’Real*4 epsilon ’,epsilon(r4)
write(6,*)’Real*8 epsilon ’,epsilon(r8)
write(6,*)’Real*16 epsilon ’,epsilon(r16)
write(6,*)’Real*4 tiny ’,tiny(r4)
write(6,*)’Real*8 tiny ’,tiny(r8)
write(6,*)’Real*16 tiny ’,tiny(r16)
stop
end

produces
Real*4 epsilon 1.19209290E-07
Real*8 epsilon 2.220446049250313E-16
Real*16 epsilon 1.9259299443872358530559779425849273E-0034
Real*4 tiny 1.17549435E-38
Real*8 tiny 2.225073858507201E-308
Real*16 tiny 3.3621031431120935062626778173217526E-4932
11Fortran code for testing if x is in fact 0.0 for real*8 should be performed as

if((x+1.0d+00).eq.1.0d+00)write(6,*)’x is in fact 0.0’
The logically equivalent command
if(x.eq.0.0d+00)write(6,*)’x is in fact 0.0’
will not work properly. The reason is that when x is a very small number when it is added to 1.0d+00
the result is seen as 1.0d+00. The direct comparison to 0.0d+00 will not detect that the number x is too
small to be meaningful. For further detail see Dongarra et. al. [5] which recommends this calculation.



H.H. Stokes / A benchmark-free approach to access the accuracy of an OLS model calculation 11

difficulty and is the best case for data saved in real*4. The second problem involves
estimating a 3 lag model of the gas data studied by Box and Jenkins [4] and later
by Tiao and Box [23]. While their analysis involved 6 lags, 3 lags were selected to
illustrate problems that occur, even in a reduced and thus presumably easier model. 12

The object is to investigate the relationship between the precision of the data (real*4,
real*8, real*16 and variable precision arithmetic [VPA]), the method of solution
(Cholesky/LU vs QR) and the difficulty of the problem. More detail on this issue is
contained in Stokes [19–21], Altman, Gill and McDonald [1] and an important paper
by McCullough and Vinod [10].

The first problem based on the Grunfeld [14] data is relatively simple in that it does
not involve right-hand-side variables of widely different sizes. The mean of General
Electric (GE) value of the firm (GEF) was 1941.33 (SD = 413.84), while the mean of
GE stock of plant and equipment (GEC) was 400.160 (SD = 250.619). The second
example uses a three-lag model of the gas data that involved different size variables
on the right. The mean for GASIN was −0.0568345 (SD = 1.0728), while the mean
for GASOUT was 53.5091 (SD = 3.202). A summary of the findings is given in
Table 4.

Using the Grunfeld [14] data set and real*8 data, the correlations for the Cholesky
estimation were [-0.356987E-14 -0.260707E-14] vs slightly more accurate results of
[0.271906E-15 0.333125E-15] for the QR approach. The corresponding numbers for
real*16 are [-0.852072E-33 -0.188439E-33] and [-0.912934E-34 -0.263815E-33],
respectively. Using the B34S variable precision arithmetic (VPA) default settings,
the correlations were [-0.332843M-62 -0.179417M-62] for a model estimated using
the LU method to invert where M is the VPA exponent that is similar to E. The
number of digits for the VPA calculation was set to the default 64 for illustration
purposes. Using real*4 data storage these correlations increased to [0.171420E-05
0.126598E-06]and [0.216786E-06-0.236300E-06]for LU and QR estimated models
respectively.13 The importance of this example is that it shows that even when using
a very widely known and simple data set, the impact of data precision on calculation
accuracy is marked. These values are roughly 10 times the epsilon values for the
data precision of the data and are to be expected. The coefficient vectors displayed
as rows for real*8, real*16 and real*4 were, respectively,

real*8 Chol 0.265512E-01 0.151694 -9.95631
real*16 Chol 0.265512E-01 0.151694 -9.95631
real*4 LU 0.265513E-01 0.151694 -9.95650

12Tiao and Box [23] used this data set to illustrate VAR and VARMA models. The unconstrained VAR
identification model contained 6 lags or 13 coefficients per row.

13The accuracy of the LU and Cholesky methods are similar and less than what can be obtained with
the QR approach. The lines Real*8 LU and Real*8 Chol show what occurs using these methods and
should be compared to Real*8 QR. The reason for this test is that the Real*4 tests were done with the
LINPACK LU routines not Cholesky routines.
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Table 4
Correlation between the error term and right-hand-sides

Grunfeld Example

GEF GEC

_____________________________________________________________________________________

Real*8 Chol -0.356987E-14 -0.260707E-14

Real*8 LU -0.912202E-15 -0.796604E-16

Real*8 QR 0.271906E-15 0.333125E-15

Real*16 Chol -0.852072E-33 -0.188439E-33

Real*16 QR -0.912934E-34 -0.263815E-33

Real*4 LU 0.171420E-05 0.126598E-06

Real*4 QR 0.216786E-06 -0.236300E-06

VPA -.332843M-62 -.179417M-62

________________________________________________________________________________________________________________

Model Estimated: GE Investment = -9.9563 + .026551 Value GE + .15169 GE Stock plant & Equipment

(-.317) (1.706) (5.9015)

e'e =132165877

1/Cond. X'X = 8.36336e-9

________________________________________________________________________________________________________________

Gas Data of lag Order 3

________________________________________________________________________________________________________________

Real*8 Chol -0.119284E-10 0.868642E-11 -0.430643E-11 -0.434085E-13 0.455703E-13 -0.123613E-13

Real*8 LU 0.949846E-10 0.803432E-10 0.903182E-10 -0.367528E-10 -0.454223E-10 -0.561377E-10

Real*8 QR 0.131642E-13 0.120757E-13 0.106601E-13 -0.596223E-14 -0.858368E-14 -0.108972E-13

Real*16 Chol -0.132839E-28 0.747619E-29 -0.214679E-29 0.515527E-32 0.797312E-32 0.441218E-32

Real*16 QR -0.137433E-31 -0.126724E-31 -0.112671E-31 0.584987E-32 0.889735E-32 0.117243E-31

Real*4 LU -0.895673E-01 -0.918947E-01 -0.891362E-01 0.369165E-01 0.452364E-01 0.557397E-01

Real*4 QR -0.144533E-05 -0.151427E-05 -0.153826E-05 0.124983E-06 0.420500E-06 0.724758E-06

VPA .957024M-59 .796435M-59 .628011M-59 -.691398M-59 -.839960M-59 -.963458M-59

__________________________________________________________________________________________________________________

Model Estimated: gasout = f(gasout(t-1),�,gasout(t-3),gasin(t-1),��,gasin(t-3), constant)

1.61227 -0.934274 0.194382 0.105623 -0.321536 -0.194984 6.80967

(28.147) (-10.70) (4.65) (1.36) (-2.11) (-1.83) (12.02)

e'e = 18.0588

1/Cond.X'X = 7.928195e-8

For data descriptions, see text. All calculations are made with the B34S program version 8.11D. The Cholesky calculation was made with 
various precisions of the LINPACK Cholesky routines. The QR results were run with the LINPACK QR code, except for the real*4 
function call to the qr( ) command, which used LAPACK. The VPA results were done with the LINPACK routines that were converted to 
run VPA math. The real*8 LU and real*4 LU calculations were made with LINPACK routines DGECO DGEDI  and SGECO  SGEDI, 
respectively. 

with relatively minor differences showing up for the real*4.
For the somewhat more complex gas data set, a different pattern emerges in the

bottom of Table 4. For real*8 the correlations increase for all cases, with the QR
estimated models showing substantially less correlation. All correlations, however,
are substantially above the machine epsilon values for the data storage precision used.
What is surprising is the relatively poor real*4 showing of correlations in the area
of |xE-01| for models solved using the LU factorization. Use of the QR method of
OLS calculation reduces these correlations to the range |xE-05| − |xE-06|, which
is still substantially above epsilon for real*4 i.e. ∼0.192E-07. The importance of
this finding is that it illustrates that any calculation involving real*4 data is very
prone to error and should be avoided. However if real*4 data are used, it is highly
recommended that the QR method be used. Even with the real*16 data, gains from
using the QR are obtained.

Table 5 replicates the calculations in Table 4 for real*8 and real*4 data using Matlab
2007a, while Table 6 attempts the same problem using Matlab 2006b. Note that
there are very minor differences indicating that in these two releases of Matlab there
appear to be hidden and not announced changes that marginally impacted accuracy. 14

14The Matlab 2006b results were done on a Windows XP Professional Dell 650 work station with
dual XeonTM 3.0 GH processors. The Matlab 2006b results were done on a Dell Latitude Windows XP
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Table 5
Correlation of the residual and right-hand-side variables using matlab 2007a

Grunfeld Example

_____________________________________

GEF GEC

Real*8 LU -1.2559e-015 4.3021e-016

Real*8 QR 8.3267e-017 2.0817e-017

Real*4 LU -4.4651e-007 1.4417e-007

Real*4 QR -9.9298e-008 2.4814e-007

Real*4 QR_2 -4.7489e-009 1.0605e-007

__________________________________________________________________________________________________

Gas Data of lag Order 3

Model Estimated: gasout = f(gasout(t-1),�,gasout(t-3),gasin(t-1),��,gasin(t-3), constant)

Real*8 LU 2.4454e-010 2.4313e-010 2.233e-010 -1.1906e-010 -1.4591e-010 -1.7591e-010

Real*8 QR -1.4745e-015 -1.0686e-015 -1.027e-015 -8.9304e-015 -4.5935e-015 2.9837e-016

Real*4 LU -0.022544 -0.023669 -0.026415 0.0035028 0.0054714 0.0087814

Real*4 QR 2.6992e-006 4.2817e-006 5.239e-006 2.8188e-006 1.8091e-006 9.9824e-007

Real*4 QR_2 8.7203e-005 8.8714e-005 8.4771e-005 -2.5406e-005 -3.4171e-005 -4.6354e-005

_________________________________________________________________________________________________

All calculations done with Matlab version 2007a. Correlation is done with the Matlab supplied command corr.  The LU factorization and 

QR analysis is done in Matlab with the LAPACK software [2]. Real*4 QR calculates the residual as ’e y Q Qy= − , while Real*4 

QR_2 uses 
1 ’e y x y xR Q yβ −= − = − . Real*8 data were converted to real*4 in Matlab using the built-in function single(  ).

Table 6
Correlation of the residual and right-hand-side variables using matlab 2006b

Grunfeld Example

_____________________________________

GEF GEC

Real*8 LU 2.0123e-016 -4.4409e-016

Real*8 QR 4.9613e-016 2.6368e-016

Real*4 LU -1.8515e-006 -3.2783e-007

Real*4 QR -2.9802e-008 2.9802e-007

Real*4 QR_2 -7.0781e-008 4.4703e-008

__________________________________________________________________________________________________

Gas Data of lag Order 3

Model Estimated: gasout = f(gasout(t-1),�,gasout(t-3),gasin(t-1),��,gasin(t-3), constant)

Real*8 LU 1.257e-010 1.3066e-010 1.2848e-010 -5.5661e-011 -6.6412e-011 -7.9434e-011

Real*8 QR -1.2436e-014 -1.1942e-014 -1.2615e-014 2.2346e-014 2.2511e-014 2.1032e-014

Real*4 LU -0.033102 -0.033387 -0.032592 0.015702 0.019042 0.022815

Real*4 QR 2.0284e-006 1.682e-006 1.3784e-006 -2.6099e-006 -2.5911e-006 -2.6249e-006

Real*4 QR_2 -1.2402e-005 -1.1405e-005 -1.027e-005 1.1327e-005 1.2809e-005 1.3571e-005

_____________________________________________________________________________________

For a discussion of what is calculated, see Table 5. Matlab documentation indicates that the LAPACK routines used were DLANGE, 
DGETRF, DGECON, DGETRI and SLANGE, SGETRF, SGECON, SGETRI for real*8 and real*4, respectively for the inv( ) command 
and DGEQRF, DORGQR and SGEQRF, SORGQR for qr( ). 

However, the patterns exhibited in both tables are similar and support the results
obtained with B34S reported in Table 2. Using Matlab 2007a for real*4 gas data and
the LU method of estimation produced correlations between |−0.0264| and 0.0035,
which are way larger than epsilon for this data type. Since most regression packages
use LU or Cholesky to solve OLS, this finding shows the danger, since the calculation
of the model has broken down. Both versions of Matlab produced error messages to
warn the user when the data was real*4. For Matlab 20006b the error message was
“Warning: Matrix is close to singular or badly scaled. Results may be inaccurate.
RCOND = 5.224432e-008”, which should alert users to problems. Matlab is to
be commended for providing the user input on rank problems of estimation. Many
software systems do not provide this warning. For the GE problem the message was
“Warning: Matrix is close to singular or badly scaled. Results may be inaccurate.
RCOND = 8.358012e-009.” The exact Matlab commands used for the gas data
problem are listed below. The command getb34s brings in the x and y matrix with
the appropriate lags for the two problems studied.

Professional machine.
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x=getb34s(’xdata2.m’);
y=getb34s(’ydata2.m’);
beta8=inv(x’*x)*x’*y;
res8=y-x*beta8;
yhat_8=x*beta8;
newx8=x;
newx8(:,7)=res8;
disp(’Matlab LU real*8 results’)
c8=corr(newx8)

beta4=inv(single(x)’*single(x))*single(x)’*single(y);
disp(’++++++++++++++++ beta4-beta8 +++++++++++++++++++’)
beta4-beta8

yhat_4=single(x)*beta4;
res4 =single(y)-single(x)*beta4;
newx4=single(x);
newx4(:,7)=res4;
disp(’Matlab LU real*4 results’)
c4=corr(newx4)

betatest=[beta8 double(beta4) ]

% qr
disp(’Matlab QR real*8 and QR real*4’)
[q8,r8]=qr(x,0);
[q4,r4]=qr(single(x),0);
yhat_q8=q8*q8’*y;
yhat_q4=q4*q4’*single(y);
% plot(yhat_q8-yhat_q4)
% [yhat_q4 yhat_q8 yhat_8 yhat_4]
res_q8= y -yhat_q8;
res_q4=single(y)-yhat_q4;

% Get residual another way via beta to test
beta_q4=inv(r4)*q4’*single(y);
% ’
yhat_q4_alt=single(x)*beta_q4;
res_q4_alt=single(y)-yhat_q4_alt;
disp(’beta_q4-beta8’)
beta_q4-beta8

newx8_q=x;
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newx4_q=single(x);
newx8_q(:,7)=res_q8;
newx4_q(:,7)=res_q4;
c8_q=corr(newx8_q);
c4_q=corr(newx4_q);

disp(’alt c4_q via beta’)
newx4_q_alt=single(x);
newx4_q_alt(:,7)=res_q4_alt;
c4_q_alt=corr(newx4_q_alt);

testres=[res8 res_q8 res4 res_q4 res_q4_alt];
testaccr =[c8(7,:)’ c8_q(7,:)’ c4(7,:)’ c4_q(7,:)’
c4_q_alt(7,:)’]’;
testaccr
disp(’++++++++++++++++ Matlab Ending +++++++++++++++’)
quit

Table 7 lists various summary measures to describe the problems studied using
the measures discussed in Table 3. These calculations were made with B34S and
validated in Matlab. Note that the condition 2 values for x for the Grunfeld and
gas data were 10,179.3794 and 3666.0302, respectively, and is the square root of
the cond 2 values for X ′X of 103619764.9 and 13439777.78 respectively. Table 3
defines condition 2 in terms of the ‖X‖2, which is the maximum singular value of
X .15 What is a bit surprising is that the condition number of both X and X ′X for the
Grunfeld data are larger than what was found for the gas data. Accuracy of meeting
the residual orthogonality condition cannot always be determined from the condition
number of the two matrices. These findings suggest that the residual correlation test
provides a needed additional diagnostic statistic, that it is imperative to calculate if
real*4 data are used and highly desirable otherwise.

5. Conclusion

These examples discussed in this paper document the dangers of estimating pa-
rameters using real*4 data and real*4 calculation. For OLS models, the probability
of inaccuracy is especially great when the LU estimation method is used as opposed
to the QR estimation approach. The best advice is to have both the data and the
calculations 100% in real*8 and use the QR method if there is any indication of

15Note that singular values can be calculated on a rectangular matrix. Given that si, i = 1, . . . , k are
the singular values of X ordered from largest to smallest, κ(X)2 can be calculated as s1/sk .
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Table 7
Summary statistics for grunfeld and gas data problems

Test Grunfeld Gas data Ratio

Norm 1 xpx 94437564.78 2543686.426 0.026935
Norm 2 xpx 81840116.56 2523291.716 0.030832
Norm 3 xpx 94437564.78 2543686.426 0.026935
Norm 4 xpx 81848691.77 2523291.941 0.030829
Cond 1 xpx 119645470.2 19085694.38 0.159519
Cond 2 xpx 103619764.9 13439777.78 0.129703
Cond 3 xpx 119645470.2 19085694.38 0.159519
Cond 4 xpx 103630622.2 13493508.94 0.130208
Cond LAPACK 119645470.2 19085694.38 0.159519
Cond LINPACK 119569773.2 12613211.34 0.105488
Eigen max/min 103619767 13439777.75 0.129703
Norm 1 x 38826.5 15674.3 0.403701
Norm 2 x 9046.552745 1588.487241 0.17559
Norm 3 x 3649.8 185.953 0.050949
Norm 4 x 9111.799002 1588.904334 0.174379
Cond 2 x 10179.3794 3666.030248 0.360143

‖X‖i = Norm i; ‖X‖i‖X−1‖i = Cond i.
For further discussion see Table 3.
Ratio = Gas Data / Grunfeld.

rank problems in the data set. While the exposition of this paper has stressed OLS
estimation, the tests proposed here can be applied to test the calculation accuracy of
models estimated with the second stage of two stage least squares since in that case
the instrumental variables on the right hand side should be orthogonal to the error
term. Many other estimation methods also require solution of the normal equations
that require the errors to be orthogonal to the X matrix columns and can benefit from
use of the proposed benchmark-free calculation test The evidence presented suggests
that the condition number of the X matrix should be checked, but that this diagnostic
test is not a 100% reliable indicator of potential problems. Inspection of whether the
estimated residual is orthogonal to the right-hand-side variables is a simple test that
does not require benchmarks of the model and can be employed as an early warning
system of potential accuracy problems in estimating the coefficients of a variety of
models. It goes without saying that the correlation routines used to perform the
proposed test must be highly accurate and not exhibit the problems documented by
McCullough and Vinod [10] in Table 2 of their classic paper.
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