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Abstract  Using a modification of the Hinich, J Time Ser Anal 3(3):169-176, (1982)
bispectrum test for nonlinearity and Gaussianity, the residuals of the Tiao and Box,
J Am Stat Assoc 76:802-816, (1981) constrained and unconstrained VAR models
for the gas furnace data reject the assumption of Gaussianily and linearity over a
grid of bandwidths for estimating the bispectrum. These findings call into question
the specification of the linear VAR and VARMA models assumed by Tiao and Box,
J Am Stat Assoc 76:802-816, (1981). Ulilizing the alternative Hinich J Nonparameltr
Stat 6:205-221, (1996) nonlinearity test, the residuals of the VAR model were shown
to exhibit episodic nonlinearity. The sensitivity of the findings to outliers is investi-
gated by estimalting and testing the residuals of L.1 and MINIMAX models from 1-6
lags. Building on the lincar dynamic specification, a multivariate adaptive regression
splines (MARS) model is estimated, using two software implementations, and shown
(o remove the nonlinearity in the residuals. Leverage plots were used to illustrate the
“cost” of imposing a linearity assumption. Out-of-sample forecasting tests from 1-6
periods ahead found that using the sum-of-squared errors criteria, the MARS model
out performed ACE, GAM and projection pursuit models.
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8 H. H. Stokes, M. Hinich

1 Introduction

Extensions of the Hinich (1982, 1996) nonlinearity tests are used to test the residuals
of the classic gas furnace data studied most recently by Box et al. (2008). This data set
had been selected by Tiao and Box (1981) when they illustrated a multistep identifica-
tion strategy for identifying a vector autoregression moving average (VARMA) model
from an assumed class of linear models. Stokes (1997) reported that the residuals of
the constrained and unconstrained VAR model for the gas data suggested by Tiao and
Box (1981) failed the Hinich (1982) Gaussianity and linearity tests. Although multiple
nonlinear models that could be linearized were tried, the nonlinearity persisted in the
residuals. The present paper first shows that the nonlinearity in the residuals is epi-
sodic, as measured by the Hinich (1996) test. The multivariate adaptive regression
splines (MARS) model, first proposed by Friedman (1991), is shown to remove the
nonlinearities in the gas furnace data model.

After a brief discussion of the Hinich bispectrum test, the gas furnace residuals are
tested. Next, the model is estimated, using L1 and MINIMAX procedures to deter-
mine how sensitive the results are to outliers. An alternative Hinich (1996) nonlin-
carity test is used to determine if the measured nonlinearities are episodic. A MARS
model was estimated for both the gas input series (GASIN) and the gas output series
(GASOUT) that produce residuals that pass the Hinich (1982) nonlinearity test.
Leverage plots were used to illustrate the “cost” of imposing a linearity assumption,
Validation tests using out-of-sample forecasting tests from 1-6 periods ahead found
that using the sum-of-squared errors criteria, the MARS model out performed ACE,
GAM and projection pursuit models.

2 VAR model setup and overview of the Hinich bispectrum test

In an influential paper on the identification of VAR and VARMA models, Tiao and
Box (1981) used the gas furnace data as an example. Their model relating the gas
input (GASIN) and CO; concentration (GASOUT) was

A(B)YZ; = ¢ M

where Z; is a row vector of the rth observation of the two series, e, is a row vector
for period t of the estimated error vector of the model for the two series, and A(B) is
the k by k autoregressive VAR matrix. Each element in A(B) is a polynomial in the lag
operator B, which maps Z, into Z,_ . Successful estimation of Eq. (1) assumes that the
roots of the determinate | A(B)| are outside the unit circle (the invertibility condition),
the expected value of the error vectors is zero and the error vectors are pure white
noise. Tiao and Box (1981) only tested the error terms for significant autocorrelations
and cross correlations. No attempt was made to test whether the linear specification
was appropriate.

Assuming linearity, Tiao and Box (1981) determined that an unconstrained model
of order 6 would clean the residuals of any measurable autocorrelation. Next, they
removed statistically insignificant VAR coefficients and estimated the constrained
model, using conditional least squares. We have replicated both their constrained and
unconstrained models and their results are reported in Table 1. We next applied the
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80 H. H. Stokes, M. Hinich

Hinich (1982) test to the residuals of these equations (o test for nonlincarity. The
Hinich (1982) test uses an estimate of the bispectrum as an average value of a square
of M? points. For a further discussion of properties of the bispectrum, see Hinich and
Clay (1968); Subba Rao and Gabr (1984); Priestley (1988) and Hinich and Messer
(1995). The larger (smaller) M, the smaller (larger) the finite sample variance and the
larger (smalier) the sample bias. Because of this tradeoff, there is no one unique M
that is appropriate to use for performing nonlinearity and Gaussianity tests. Hinich
(1982) has suggested that a good value for M is +/N. A lower M would be VN /3.

In the models fit 1o the gas furnace data, where N = 296 for the complete sample,
we have reported M values from 9 to 18, and averaged the result to insure that our
findings are not sensitive to the M value selected. To test the null hypothesis that the
error term is Gaussian, Hinich suggeslts the G statistic, which is normally distributed.
To test whether the series is linear, Hinich suggests the normally distributed L sta-
tistic. For details of this test, see Hinich (1982); Hinich and Patterson (1985) and
Ashley et al. (1986).

In this paper we report normal approximations of the Gaussianity and linearity tests.
Mean values for G and L over all values of M are also reported. The Hinich critical
values have been used to detect the presence of nonlinearity, although Lee (2001)
in research involving simulations suggests that these values are overly conservative.
Hinich et al. (2005) as well as Patterson and Ashley (2000) confirmed this finding.
Hence, if the mean G and L values fail the Hinich test using the original Hinich critical
values, it is more likely that the process is nonlinear.

Ashley et al. (1986, p.,174) presented an equivalence thcorem which proved that
the Hinich bispectral linearity test statistic is invariant to linear fillering of the data.
This important result proves that the linearity test can be cither applied to the raw
series or (o the residuals of a linear model. An additional important implication of the
theorem is that if X(#) is found to be nonlinear, then the residuals of a lincar model
of the form v, = f(X(¢)) will be nonlinear, since the nonlinearity in X(t) will pass
through any linear filter.

The above paper also reported tables on the power of the Hinich linearity test
for detecting violations of the linearity assumption for a variety of common nonlinear
models appearing in the literature and a table of the power of the lincarity and Gaussia-
nity tests for a number of sample sizes and M values. Their findings indicate substantial
power for both tests, even when N is a small value, such as 256, if the value of M used
is between 12 and 17. For this sample size, as M increases, the power of the test falls
off. This is later illustrated in our test results.

Hinich (1996) proposed another testing strategy that could be applied to two series
within the sample based on the sample cross-correlation at lags rand s, C\(r. s) and
the sample cross bicorrelation, Cyv(r, 5), This test required whitened series and is
suitable for the residuals of a model but not the raw series. Define m = max(r, s)

N—nm . . 5
z;: " (X Xt Ves)
N—m

Cray(r,s) = (D

Let L = N¢, where 0 < ¢ <0.5. Test statistics [or non-zero cross correlations and cross
bicorrelations are 7
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Detecting and modeling nonlincarity in the gas furnace data

L
Hey(N) =D (N = r)C3,(r)

r=I

a3
He(N) = Z Z(N = m)C_?i_\_l‘,(r,.').

s=—1 r=I

where s # 0. Hyy(N) and H,(N) are asymptotically Chi-squared with L(2L + 1)
degrees of freedom but for the purposes of this paper have been transformed to (0, 1)
under the null. The Hinich (1996) test has a number of advantages that include being
able 1o test for nonlinearity mapping from one series to another and being relatively
quick to calculate. This latter advantage allows the test to be performed within the
sample to test for episodic nonlinearity. In the empirical section the probabilities of
Hyy(N) and Hyxy(N) are given. For (esting one serics, say v, Hinich (1996, ¢q.,3.1)

recommends using a variant of (1),
I

Define G(r, 5) as the ;s sample bicorrelation multiplied by v Lo standardize its
4/ =

variance. The statistic H, which is defined as H, = N ¢ Zf:: Z,‘;: [G2(r, s) — 1]
where 0 < ¢ < 0.5 is N(O,1), can be converted (0 a probability of rejection of the
assumption of linearity.

3 Results using VAR models

Table 1 replicates the estimated coefficients of the Tiao and Box (1981) gas furnace
data example. In Table 2 the Hinich bispectrum tests are performed on a grid of M
values, going from 9 to 18, to test the residuals from the two equations implicit in
both the unconstrained and constrained VAR(6) models listed in Table 1 for both the
Gaussianity (G test) and the linearity (L test). The G test values are all above 4.99
for GASIN and 10.92 for GASOUT, indicating that both residual series, for both
constrained and unconstrained models, reject the assumption of Gaussianity (G test)
at a very high level of significance. For virtually all values of M, the assumption of
linearity is also rejected by the L test. The lower L scores were found only with the
higher M scores (17 and 18), which have a large bandwidth. For purposes of compari-
son, ¢'e for the GASIN and GASOUT residuals was 9.8847 and 16.1309, respectively.

As was mentioned earlier, Ashley et al. (1986, Tables | and 2) investigated the size
(number of observations) needed for the Hinich linearity and Gaussianity tests and the
power of such tests for various values of M and number of observations. Their findings
indicate that for this example both G and L tests will give satisfactory convergence and
that both tests detect nonlinearity with considerable frequency, even in cases in which
N = 256. These simulation results suggest that it is appropriate o use the Hinich tests
in the present case in which N = 290.

Table 2 documents that our findings of nonlinearity are invariant as to whether the
estimated form of Eq. (1) is unconstrained or constrained. In results not reported, we
experimented with increasing the lag length of the unconstrained VAR model from
6 to 12. The findings were similar. We conclude that even though the distribution of
the Hinich tests is known only asymptotically, the magnitude of the Z scores at a high
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82 H. H, Stokes, M. Hinich

Table 2 Z scores for Gaussianily and linearity lests or unconstrained and constrained 6th order VAR
model of the GAS data

Hquation | Equation 2

Unconstrained Conslrained Unconstrained Constrained

M G L G L L G L

10.80 5.80 11.76 7.75 27 5.53 [1.64 5.81
12.07 6.30 12.53 5.91 .86 4.52 12,05 6.34
7.05 6.77 8.62 7.30 24 5.29 11.35 6.00
12.75 3.08 12.77 7.01 .22 6.27 12.21 4.87
13 5.99 2.63 0.94 2.74 19 4.00 I1.41 5.81
14 7.51 1.45 8.07 1.37 10.92 8.45 11.36 475
15 4,99 4.04 4.98 1.98 11.45 3.27 11.58 6.21
16 6.47 3.40 6.95 8.19 12.91 3.40 12.91 249
17 7.63 1.1l 9.30 6.59 12.05 0.17 12.39 0.99
18 6.48 .00 6,90 0.63 12,46 4.23 12.67 4.06
Mean 818 352 8.88 4.95 11.76 4.52 11.96 4.73

G = 7 score for normal approximation for Gaussianily test, L= Z score for lincarity test. M = Square
rool of (he number of terms used Lo estimate the bispectrum at the center of the square. The number of
residuals was 290. Equation | is for the gas furnace input data. Equation 2 is lor the gas furnace output data.
Coefficients for the unconstrained (Model 1) and constrained (Model 2) are given in Table |, Estimated
coelficients are consistent with those of Tiao and Box (1981), For further detail on Tables | and 2, see
Stokes (1997, Chapter 8)

confidence level indicates that both the input series and the output series fail the null
hypotheses of Gaussianity and linearity. In an attempt to remove the indications of
nonlinearily in the test statistics, an exhaustive search of alternative nonlinear models
that could be linearized was attempted without success. To investigate the possibility
that outliers were giving the illusion of nonlinearity, L1 and MINIMAX models were
tried. L1 models minimize > |e;| and are less sensitive to outliers than OLS models.
MINIMAX models minimize max |¢;| and are more sensitive to outliers than OLS
models. Using all three estimation methods, six alternative models of GASOUT of
the form

k k
GASOUT, =« + fo + > GASIN; + D GASOUT; 4)
i=0 j=1

were tried for lags of & = {I .6} and the results are reported in Table 3. Note
that in this model GASIN, was included. Gaussianity is rejected for lags 1-6 for all
estimators. Linearity is rejected for lags 2—6 for L1 and OLS. The MINIMAX model
rejects linearity for models with 3 lags and 4 lags. In the MINIMAX model, the cost
of reducing the maximum |¢;| is reflected by ¢'e values that are two or more times
bigger than their OLS and L1 counterparts. MINIMAX models with 1,2, 5 and 6 lags
have no indication of nonlinearity, but have ¢’¢ values that are in general more than
two times their OLS counterparts, (32.36 verses 16.44 forlag 5 and 30.41 verses 16.09
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Detecting and modeling nonlinearity in the gas furnace data

Table 3 Tests on the residual of alternative estimators of a modified linear model

Lag Ll OLS MINIMAX

G L G G L

17.11 —0.57 17.19 8.16 =3.11
21.63 10.11 17.15 18.22 1.56
26.95 7.31 16.15 3 36.48 233
16.41 6.61 13.61 7.96 2.89
15.68 7.35 11.54 9.92 0.28
14.56 5.10 1151 17.03 0.13

maxlel Zlel e maxliel e maxlel Tlel

249 111.90 76.51 247 160.3 1.73 178.5
1.53 51,49 190,60 1.54 52.69 0.91 105.3
.47 50.23 18.02 1.50 48.59 0.84 104.3
1.54 47.83 16.71 1.49 37.01 0.79 85.09
1.55 47.53 16.44 1.40 32.30 0.73 77.66
1.53 47,06 16.09 .41 30.41 0.73 74.78

for lag 6). Since L1 models are less sensitive Lo outliers than OLS models, the poor
performance of L1 in removing the nonlinearity suggests that outliers are not tripping
the Hinich (1982) test.

The next experiment was to test whether the measured nonlinearity varies over
time. Table 4 uses the Hinich (1996) test (o investigate the within-sample properties
of the residuals of the VAR(6) model of the gas furnace data series given in Table 1.
Two window sizes of 20 and 30 were used. For notational simplicity, define x = the
residuals of GASIN and v = the residuals of GASOUT. H, and H, measure the
probability of nonlincarity remaining in the residuals of the GASIN and GASOUT
models, respectively. Hyy and Hy measure the probability of there being a nonlinear
relationship between the residuals of GASIN (o the residuals of GASOUT or the resid-
vals of GASOUT to the residuals of GASIN, respectively. Py, P, and Py, measure
the probability of autocorrelation in the GASIN residuals, the GASOUT residuals and
between the GASIN and GASOUT residuals, respectively.

Inspection of Hy and H, for both windows shows periods of nonlinearity in each
serics. Using a window size of 20, H, was 0.92 and 0.90 for windows | and 2, respec-
tively, which included observations [—40. Using a window size of 30, H, was 0.94
in window 1, covering observations 1-30. For the 20-observations window, H, and
Hy were, 0.94 and 0.91 respectively in window 6 that covered observations 101—
120. For the same window Hy, and Hy, were 0.9995 and 0.9837, respectively. Using
the 30-observations window, H, and H,, had values of 0.98 and 0.94, respectively,
for window 4, covering observation 91-120, indicating that there was a relationship
between the nonlinearity in the GASIN series residual and GASOUT series residual.
The autocorrelations and cross correlations of the residual series for the complete
sample are flat.
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84 H. H. Stokes, M. Hinich

Table 4 Episodic nonlincarity tests on residuals of VAR(6) model of the gas furnace data

Window  Obs begin ~ Obsend Ay Hy Hyy Hyy Py Py Pyy

20-Observations window
| 1.000 20.00 09161 0.2585 0.8313 0.1657 0.9319 0.0298 0.8673
2 21.00 40.00  0.9023  0.2420 09977 02821 0.6265 0.5210 0.7833
41.00 60.00 05499 0.1330  0.9882 0.9550 0.4752 0.0829 0.7788
a3 61.00 80.00 03074 0.3405 0.4314 0.7664  0.0388 0.9000 0.7628
81.00 100.0 0.6689  0.5759 0.1725 0.8941 05412 0.9743  0.4024
101.0 120.0 0.9445 09145 0.9995 0.9837 0.4257 0.4402 09271
121.0 140.0 01372 0.1906  0.03957  0.0240 0.6553 0.9899 0.1687
141.0 160.0 0.7008  0.5053  0.4304 0.0192 05055 0.7427 0.0988
161.0 180.0 0.5193  0.8839  (.4963 0.8676 0.9271  0.9729  0.7095
181.0 200.0 0.7077  0.9568 0.1443 (0.8591  0.8089 0.7413  0.7274
201.0 220.0 0.2225  0.3257 0.5370 0.9212  0.8503 09087 0.6343
221.0 240.0 0.0353  0.4755  0.0503 0.2564  0.4339  0.3199 09025
13 241.0 260.0 0.0461  0.1492  0.7665 0.8273 09695 0.1152  0.9379
14 261.0 290.0 0.3780  0.4675 0.0046 0.1469  0.1768 0.9986  0.5782
30-Observations window
1 1.000 30.00 09401 0.5035  0.5274 0.5016  0.8710  0.1031 0.9428
31.00 60.00  0.1143 02178 0.1715 0.8537 0.8200 0.1457 0.9589
61.00 90.00  0.6934 0.5751 0.3824 0.7185 0.1962 0.9526 0.1077
91.00 120.0 0.9829 0.8760 0.9427 0.7067 02149  0.7155  0.8948
121.0 150.0 0.4982 10,3916 0.2873 0.5187 0.6239  0.9851 0.1880
151.0 180.0 00118 0.9450  0.5312 0.7611  0.8083 0.9856 0.4810
181.0 210.0 0.9247  0.9925  0.4945 0.9901 00,8557 0.8896  0.8737
211.0 240.0 0.2800  0.5237 0.2165 0.2548  0.4533  0.4997  0.9695
241.0 290.0 0.6338  0,8891  0.9999 1.000  0.9579  0.8227 0.9774

H, and H, measute the probability on nonlinearity in x and y, respectively. Hyy measures the probability of
nonlincarity in x being reflected in v, while Hyy measures the probability of nonlinearity in y being reflected
in x. Py and P, measure the probability of autocorrelation in x and v.respectively, while Py, measures the
probability of cross corrclation between xand v '

For the subsamples, significant values show up. For the 20-observations window,
P, is significant for windows 1 (0.93), 9 (0.93) and 13 (0.97). Py is significant for
windows 5 (0.97), 7 (0.99) and 14 (0.99). For the 30-observations window, Py was sig-
nificant for window 9 (0.96) and P, was significant for window 3 (0.95), 5 (0.99), and
6(0.99). P,y was significant for windows 2 (0.96), 8 (0.97) and 9 (0.98). The results of
the sub-sample estimation suggest that there are episodic periods of both nonlinearity
and linear memory in the model. These results suggest that it might be promising to
attempt a modeling strategy that includes a quite genceral class of threshold models
to remove the nonlinearity. The technique chosen was MARS, a general data-driven,
nonparametric approach, which has had success in other recent applications. These
results are discussed next.
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Detecting and modeling nonlinearity in the gas furnace data

4 The MARS approach

The resulls in the preceding section indicate that the residuals in both the constrained
and unconstrained models of the gas furnace data suggested by Tiao and Box (1981)
fail the Hinich (1982) (ests for nonlinearity and Gaussianity. The residuals of the
unconstrained VAR model for GASIN and GASOUT are graphed in the tops of Figs. |
and 2, respectively. Looking first at the GASOUT residual series, shown on the top
of Fig. 2, note the relatively homogenous pattern for the first 60% of the series, with
larger spikes at observation 193 of 0.975, observation 230 ol —(0.7526 and observation
259 of 1.431. The GASIN residual series graphed in the top of Fig. 1 shows outliers
at observation 37 of 1.016 and observation 49 of —0.8851. The task is to select an
estimation method having VAR as a special case, but allowing possible level-specific
function changes, including interactions, that might be able both to reduce the variance
of the residual and model some of these outliers while preserving the property that the
sum ol the residuals is constrained to be 0.0.

The MARS approach, first proposed by Friedman (1991) and used successlully by
Lewis and Stevens (1991) in a time series context was shown later by Lewis and Ray
(1997, p., 883) (o generalize the Tong (1990) threshold autoregression (TR) model to
fit nonlinear threshold models that are continuous in the domain of the predictor vari-
ables and allow for interactions among lagged predictor variables. Using the MARS
method of estimation, it was thus possible Lo have lagged prediclor variable thresh-
olds, thus overcoming the limitations of Tong’s approach. Lewis and Ray (1997) called

Gasin=f(gasout{1 to 6} gasin{1 to 6})
VAR Residual

_ulr..,}n.nl..,.,.mnhh.
e

)

2a putgillp Attt s A Jf-whn 24
Ty 1\1:\1"| 1 Ghad B LAl VR

T T T T T T

.
50 100 150 200 250

MARS Residual

FPTY o Y
w L[

Mt AR i,
i ad (el L

ISENERNNE

50 100 150 I
Fig. I GASIN residuals for VAR and MARS models

Gasout=f(gasout{1 to 6} gasin{1 to 6})
VAR Residual

09 %WHW%WWL

i
-1.0 T T T T T
50 100 150 200 250

MARS Residual

1.0

T

-1.0 ]
50 100 150

Fig. 2 GASOUT residuals for VAR and MARS models
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80 H. H. Stokes, M. Hinich

Table 5 MARS and MARSPLINE models of GASOUT in the gas furnace data

Model G L e

OLS 6th order VAR 11.756 4.518 16.14

Max inleraction |

MARS model 12.000 4.463 15.00 15,73
MARSPLINE Model ¢ = 2 8.15 5.43 12.28
MARSPLINE Model ¢ = 3 7.606 4.20 14.00

Max interaction 2

MARS model 7.812 3.925 11.31 13,76
MARSPLINE Model = 2 0,93 0.72 6.35
MARSPLINE Model ¢ = 3 —(1L05 0.22 9.14

Max interaction 3

MARS model —0,736 —(.209 7.1111.61
MARSPLINE Model d = 2 —(1.86 —0.31 5.38
MARSPLINE Model ¢ = 3 —0.50 0.12 6.2

Max interaction 4

MARS model —0,637 —1.04 7.14 12,66
MARSPLINE Model ¢ = 2 1.56 1.18 5.00
MARSPLINE Model ¢ = 3 2.27 .84 5.90

For MARS™ models the first ¢'e is the piecewise-linear approximation and the second ¢’e is the piecewise-
cubic approximation. For MARSPLINE models the penalty is set as 2 and 3, respectively, For all models
the upper limit on the knots is 80. The GASOUT series is the dependent variable in all cases. All models
were estimated with independent variables GASIN, GASIN, _>, GASIN,_3, GASIN, _g, GASIN, _s.
GASIN,—6, GASOUT, |, GASOUT,__3, GASOUT, .3, GASOUT, _y, GASOUT,_5 and GASOUT, _¢

their approach TSMARS, or MARS related to time series. In related work. Chen and
Tsay (1993a) used arranged local regression models to model the chickenpox data, the
sunspot data and a simulated series. Chen and Tsay (1993b) used a nonlinear additive
autoregressive model with exogenous variables for nonlinear time series model fitting.

The MARS approach can be thought of as a generalization of this approach in
that higher order interaction terms are allowed. Some years after 1991 Friedman
trademarked his implementation of the MARS algorithm: the resulting program is
distributed by Salford and sold as MARS™. Estimation using the 1991 3.5 version
of this code was first reported in Stokes (1997), who had obtained the Fortran from
Friedman in 1991,

Hastie and Tibshirani released an alternative GPL Fortran implementation of the
MARS technique with some differences regarding how the knots are handled, which
is contained in R. Improvements to this version have been made by Stokes and will
be referred to as MARSPLINE. The differences between the two programs suggesl
reporting both to validate the calculations as will be done in Table 5. As a preview, note
the GASIN and GASOUT residual plots in the bottom of Figs. 1 and 2, which show the
magnitude of the residual reduction that was obtained when the linearity assumption
was dropped and a MARS model was estimated using MARSPLINE software.
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S

The MARS technique assumes a nonlinear model of the form

y:f(,\‘[....,Xm)‘*‘Ue (5)

e variables, X1, . Xy, which are col-

involving N observations on n right-hand-sid .
fiX)is approximated by

umn vectors in the N by m matrix X. The function
A
70 =D ¢ K0, (6)
j=1

Ry

product basis functions {K,-(’X)}/:l

where f(X) is an additive function of the , .
associated with the s disjoint sub-regions (Rj}j— of D (D = Xj_ Rj) and ¢ is
the coefficient for the jth product basis function. An OLS model Is a SPCC}al caze of
a MARS model, if all sub-regions include the complete range ol'.each of the right-
hand-side variables. In this situation, the coefficients (¢ J'_, canbeinterpretedas OLS
coelficients of the right-hand-side variables. The MARS approach 'dF“l‘ ﬁes the SUb-
regions under which the coelficients are stable and detects any possible interactions
up to a maximum number of possible i nteractions controllable by lhg user. )
In contrast to other spline approaches that require the user to specify the knots 77,
the MARS algorithm produces an estimate of the knot. If all knots are found to be at
the minimum of the x variable, then the MARS algorithm has 51g‘naln.:d that OLS is the
correct estimation procedure. In this case all variables are ﬁgu'rmg in lhc.calculalion
of 9, no matter what their level. The VAR model maintains this assumption and can
be thought of as a special case of MARS. The derivative of the spline function is not
defined for values of x at the knot value. Friedman (1991) suggests using cither a linear
or cubic approximation to determine the exacty value and has implemented this in his
code MARS™. In contrast, the Hastie and Tibshirani (1990) MARSPLINE program
does not make this adjustment.
Models in this paper have been €S
and with the newer Hastie and Tibshirani
results reported later in Table 5, both of th
late ¢'¢ have been reported and the one wit :
has been selected. In setting up @ MARS estimation, the uscr Sc.‘lccls l_hc maximum
number of knots to consider and the maximum order of interaction to investigate. It
will be shown that the order of interaction makes a difference in removing the non-
linearity. As an aid in determining the degree of model complexity, Friedman (1991)
suggests using a modified form of the genera]ized cross validation criterion (MGCV).

timated with the original MARS™ Fortran code
(1990) MARSPLINE Fortran code. In the
e Friedman evaluation techniques to calcu-
h the lowest sum of squares ol the residual

) N 7 ; X')’)Z
(1/N)§'__|(_\l f( i
MGCV = 0 [C‘(M)"’:/N]‘

= f(X,-) and C(M)" isa complexity penalty. The

where there are N observations, i g
(fective number of parameters. The

default is to set C(M)* equal toa function of the ¢
formula used is

C(M) = C(M)+dM (8)
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The parameler d, which is user-controlled, has been set to the default value of
3 as suggested by Friedman (1991) for MARS™ estimation and 2-3 for MARS-
PLINE estimation, since Hastie et al. (2009) suggest ¢ = 2 if the number of inter-
actions is 1 and d = 3 for higher-order interactions. As will be illustrated, ¢’¢ will
in general be larger when d = 3, since from Eqs. (7) and (8) in most cases sim-
pler models will be selected. C(M) is the number of parameters being fit and M the
number of nonconstant basis functions in the model. The MARS approach starts by
chBosing where to place the knots for a non-interaction model. Next, more complex
interactions arc chosen up to a user-controlled maximum number of interactions and
maximum number of parameters in the model. Once the forward selection is com-
pleted, the MGCV stalislic is used to eliminate parameters that improve the model
only slightly.

The MGCV value controls how many parameters finally remain in the model and
can be used to form an estimate of the relative importance of each x; variable in the
model. The MARS technique requires that the user select the variables xq, ..., x,, to
use in (6). Since the gas furnace data model involves lags, an immediate concern is
how to select the appropriate lags of GASIN and GASOUT to place inthe xy, .. ., x,,
vector. The technique proposed in this paper is first to use the VAR model, such as
proposed by Tiao and Box (1981), to determine the maximum number and placement
of the lags of x and y to estimate a VAR model of the series in the lincar domain. If the
resulting residuals show evidence of nonlinearity, as measured by the Hinich (1982)
test, then these would first be used on the right-hand side of the MARS model equa-
tion. It must be emphasized that such a procedure would not be strictly appropriate
if evidence of feedback were found in the VAR or VARMA step of the model. In a
VAR model, since contemporaneous elfects (instantaneous causality) are seen in the
off-diagonal elements of the covariance matrix, contemporaneous values of some X
variables must be included on the right-hand side ot the MARS equation if the VAR
model has identified instantancous causality.

A MARS model with up to 80 knots and from [—4 interactions was estimated
using the MARS and the MARSPLINE code for GASIN and GASOUT. Figures |
and 2 show the MARSPLINE and VAR residuals for the interaction = 4, d = 2 model.
Detailed inspection of the plots graphically shows the gains from dropping the linearity
assumption implicit in the VAR model. Note that for both the GASIN and GASOUT
residuals, the MARS residuals are within much tighter bounds as compared with the
corresponding VAR residuals. Using the Hinich (1982), test note that for interactions
24 and d = 2, the MARSPLINE program removes the nonlinearity as shown by
L values of 0.72, —0.31 and .18, respectively. For the MARS program for interac-
tions 3—4 the nonlinearity was removed as shown by L values of —0.209 and —1.04,
respectively. The differences may be due in part to the default penalty being set for
MARS™ a13.0 and MARSPLINE at 2.0. To test for this possible effect, MARSPLINE
models were re-estimated for d = 3, where the Hinich L values were 0.22, 0.12 and
1.84, respectively, for interactions 2—4. Note that for every interaction setting, ¢’¢ is
lower for the MARSPLINE approach, no matter what the d setting. For purposes of
comparison, the VAR (6) unconstrained G and L values from Table 2 are also shown,
In comparison (o the VAR results where ¢’¢ was 16.14, the MARSPLINE results for
interaction =4, d =2 had been reduced to 5.00.
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The MARSPLINE code allows calculation of standard errors, since after &;(X)
has been determined, OLS is used o obtain the estimated coefficients ¢ and §; using
the transformed data vectors that contain knots and interaction terms. The MARS-
PLINE interaction =4, d =2 model contained 48 estimated coefficients, while the
more restricted d =3 model contained 40. The MARS model had 28 coefficients,
making the results difficult to summarize without recourse to leverage plots. Define
a leverage plot as a graph of the forecasted left-hand-side variable against each right-
hand-side variable over its range when all other variables are held at their means or
expected value. Leverage plots have been calculated for MARSPLINE models for all
right-hand-side variables (or interactions 1—4 and are shown in Figs. 3,4,5 and 6.
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What is occurring can be illustrated by a number of examples. Consider
GASOUT( | (= GASOUT,_) shown as upward sloping for all graphs. This sug-
gests that this variable enters in a positive and linear fashion that is invariant to the
number of interactions. GASOUT{ 3} illustrates nonlinear effects. For interaction=1,
the plot is flat, showing no effect on the left-hand-side variables, given all other vari-
ables were at their means. However, the plot changes for interactions 24 when we
see a downward slope that flattens out one third of the way into its range. For a linear
model estimated by the MARS approach, the leverage plots would be linear, either
upward, downward or horizontal. The fact that kinks are shown illustrates the cost of
imposing linearity that is documented in the higher ¢'e values for the linear models
and the Hinich (1982) test finding evidence of nonlinearity,
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5 Alternative models and out-of-sample validation

To investigate if the estimates of nonlinearity in the residuals detected by the Hinich
(1982) test were sensitive to OLS being used, the more robust estimator L1 estimator
that minimizes the sum of the absolute values of the residual was tried on the exact
VAR model estimated with OLS. For the GASIN equation the L statistic was 6.054 and
for the GASOUT equation the L test was 4.71. Since these equations used the exact
VAR spegification, not a model with a contemporancous GASIN series on the right as
was reported in Table 3, these findings are consistent with the view that the estimated
nonlinearity in the residuals found was not due to OLS, which is more sensitive to
outliers, being used for estimation.

Nonlinearity tests on the raw series are reported to control for any possible elfect of
estimated models on the nonlinearity finding. Hinich (1982) tests on the raw GASIN
and GASOUT series produce G and L values for GASIN of 2.95 and 0.0980, respec-
tively, and test statistics for GASOUT of 8.214 and 4.691, respectively. This finding
of nonlinearity in the GASOUT series and not in the GASIN series is consistent with
the hypothesis that the nonlinearity found in the residuals of the GASOUT equation
appears to be coming from the nonlinearity in the raw GASOUT series that passed
through the linear VAR model.

The next task is to test out-of-sample performance of the MARS model against OLS
and other nonlinear estimation alternatives. The results of this exercise are reported
in Table 6, where from 1-6 out of sample forecasts were made for OLS, GAM, ACE,
MARS and projection pursuit models at the end ol the data period. These alternative
techniques and the results will be briefly discussed next.

The GAM (general additive model) approach, initially developed by Hastic and
Tibshirani (1990) and discussed more recently in Hastie et al. (2009) and Faraway
(2006), estimates a model of & explanatory variables X ; of the form

-
v=PRo+ D (X)) )

J=I

where f;(X;) is the smoothed X; scries estimated with the use of an iterative
backfitting approach. In the forecasts reported later, the smoothing was done with

Table 6 Out-of-Sample forecasting using MARS, PPREG, GAM. ACE and OLS models

Out of sample OLS_ESS ACE_ESS MARS_ESS GAM_ESS PP_ESS

.0860 0.0517 0.0106 0.1053 0.7425E-5
0.0719 0.0443 0.0649 0.0814 0.0614
0.0857 0.0495 0.0600 0.0811 0.0209
0.2270 0.1424 (.0589 0.1997 0.1120
0.2425 0.1780 0.0813 0.2074 0.0782
6 04119 0.31063 0.4581 0.3765 (0.5457
Mean of col 0.1875 0.1304 0.1223 0.1752 0.1362
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a third-degree polynomial. The ACE (alternating conditional expectations) approach,
discussed in Faraway (2006), generalizes the GAM model to smooth both the lelt-hand
and right- hand sides of the model (o form

k
0 = o+ D fi(X)) (10)

=1

Imposing the restriction that the variance of #(y) = 1, the ACE model mini-
mizes Zisz (A(y) — Zf}:] fi(xij) — Bo)°. The projection pursuit regression model
estimation method of Friedman and Stuetzle (1981), discussed in some detail in Hastie
etal. (2009), can be thought of as a generalization of the GAM specification, where for
M trees f(X) = z,‘f:, 8m (@), X). The M functions g,, (@), X) are estimated along
directions ay,, using a flexible smoothing function, The idea is to form nonlinear func-
tions of linear combinations of the k X variables. w;, is a unit k-vector of the unknown
parameters. As noted by Friedman and Stuetzle (1981), if M is taken to be sufficiently
large, the projection pursuit approach is a universal approximation in that any contin-
uous function can be approximated arbitrarily well. Note that in the above discussion
M has been redefined from its use in the discussion of the Hinich (1982) test.

The results of this exercise are listed in Table 6. Out-of-sample tests were
performed by holding out from 1-6 observations, estimating a model and using this
model to forecast ahead. The columns represent the average of out-of-sample error
sum of squares for from 1-6 out-of-sample periods. Note that for the means of the six
out-of-sample tests, the MARS_ESS value js less. This indicates that for the experi-
ment, the MARS mode! out performed the other methods. Going from best to worst
and using the average of the columns as a heuristic test statistic, the ranking was
MARS, ACE, projection pursuit, GAM and OLS. All calculations in this paper have
been done with version 8.11E of the B34S software built with the Lahey 7.2 Fortran
compiler using optimization level 1. Graphs have been drawn using RATS version
7.30.

6 Conclusion

The Hinich (1982) test was used to test the adequacy of the linearity assumptions in
the classic Box et al. (2008) gas furnace data. After finding evidence of nonlinear-
ity, various lincarizable, nonlinear models were tried without success. L1 and MINI-
MAX estimation models were used to determine if the measured nonlinearity of the
exact model used to estimate the VAR was sensitive to outliers, where the L1 (MINI-
MAX) model is less (more) sensitive 1o outliers than OLS models. The L | models of
GASOUT were found not to remove the measured nonlinearity in the residuals. In
four out of six MINIMAX models, measured nonlinearity was removed at the cost of
relatively large ¢’e values. The Hinich (1996) test, applied (o subsamples of residu-
als, indicated that the nonlinearity was episodic. The MARS approach was shown o
remove the measured nonlinearity in the model residuals for GASIN and GASOUT
and produce a closer fit. Leverage plots were utilized to show the nonlinearity in the
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effects of the right-hand-side variables. Out-of-sample forecasts for from |—6 periods
were compared using OLS, GAM, ACE, projection pursuit and MARS models, with
the latter technique giving the smallest error sum of squares,
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